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a b s t r a c t

A model describing the dynamics of Cohen-Grossberg neural networks with time-delays
and impulses is considered. By means of Lyapunov functionals and a differential inequality
technique, criteria on global exponential stability of this model are derived. Many
adjustable parameters are introduced in the criteria to provide flexibility for the design and
analysis of the system. The results of this paper are new and they supplement previously
known results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of impulsive delay differential equations is emerging as an important area of investigation, since it is a lot
richer than the corresponding theory of nonimpulsive delay differential equations. Many evolution processes in nature are
characterized by the fact that at certain moments of time they experience an abrupt change of state. That was the reason
for the development of the theory of impulsive differential equations and impulsive delay differential equations, see the
monographs [1,2].
The purpose of this paper is to study the stability of the following impulsive Cohen–Grossberg neural networks (CGNNS)

with variable coefficients and several time-varying delays:
ẋi(t) = −ai(xi(t))

[
bi(t, xi(t))−

n∑
j=1

cij(t)fj(xj(t))−
n∑
j=1

dij(t)fj(xj(t − τij(t)))+ Ji(t)
]
,

a.e. t ≥ 0, t 6= tk, (a)
xi(t+) = gik(xi(t))+ hik(xi(t − ςi(t)))+ Iik(t), t = tk, i = 1, 2, . . . , n; k = 1, 2, . . . , (b)

(1.1)

where n corresponds to the number of units in a neural network; for i, j = 1, 2, . . . , n, xi(t) denotes the potential of cell
i at time t; 0 ≤ τij(t), ςi(t) ≤ τ correspond to the transmission delays. The first part (called the continuous part) of (1.1)
describes the continuous evolution processes of the neural networks. For i, j = 1, 2, . . . , n, ai represents an amplification
function; bi is an appropriately behaved function; cij(t) and dij(t) denote the strengths of connectivity between cell i and j
at time t , respectively; fi shows how the ith neuron reacts to the input; Ji(t) is the external bias on the ith neuron at time t .
The second part (called the discrete part) of (1.1) describes that the evolution processes experience an abrupt change of
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states at the moments of tk (called impulsive moments); For i = 1, 2, . . . , n; k = 1, 2, . . ., the fixed moments of tk, satisfy
t1 < t2 < · · · < tn < · · ·, and limk→∞ tk = ∞; gik represents impulsive perturbations of ith unit at time tk; hik represents
impulsive perturbations of ith unit at time tk, which is caused by the transmission delays; Iik(tk) represents the external
impulsive input at time tk.
(1.1)(a) as a model of neural network (CGNNS), which included Hopfield neural networks as a special case, has been

studied widely. Recently for the delayed CGNNS such as (1.1)(a) with bi(t, xi(t)) = bi(xi(t))(i = 1, 2, . . . , n), some criteria
for the global asymptotic stability are established. We refer to [3–6]. In [7], the authors investigate the effects of delays, but
the differentiability of the varying delays τij and the behaved function bi are needed. However their work mostly focuses
on the autonomous CGNNS. In [8,9], the authors study the existence and exponential stability of periodic solutions for a
periodic nonautonomous CGNNS, respectively. Other results for a nonautonomous CGNNS are few. We refer to [10–12].
In this paper, we will investigate the global asymptotic stability of the nonautonomous CGNNS and focus on the effect of

impulses on the dynamic behavior of (1.1). The results of this paper are new and they supplement previously known results.
For a continuous function a(t) defined on R+ = [0,∞), we denote a+(t) = maxt∈R+{0, a(t)} and a

−(t) = mint∈R+
{0, a(t)}.
For convenience, the following conditions are listed.
(H1) ai and fi (i = 1, 2, . . . , n) are continuous on R; cij and Ji (i, j = 1, 2, . . . , n) are continuous on R+; dij (i, j = 1,

2, . . . , n) is continuous and bounded on R+; bi(i = 1, 2, . . . , n) is continuous on R+ × R; Furthermore, there exist positive
constants αi and ᾱi such that αi ≤ ai(x) ≤ ᾱi for all x ∈ R and i = 1, 2, . . . , n.
(H2) There exist positive continuous functions βi(t), i = 1, 2, . . . , n, such that
bi(t, u)− bi(t, v)

u− v
≥ βi(t) > 0 for all t ∈ [0,∞), u, v ∈ R and u 6= v;

(H∗2) There exist positive continuous functions βi(t), i = 1, 2, . . . , n, such that

ubi(t, u) ≥ βi(t)u2 for all t ∈ [0,∞), u ∈ R;

(H3) There are positive constants Fi > 0, i = 1, 2, . . . , n, such that

|fi(u)− fi(v)| ≤ Fi|u− v|,

for all u, v ∈ R and i = 1, 2, . . . , n.
(H4) There exist positive constants qk > 0, pi > 0, µki ∈ R, ωki ∈ R(i = 1, 2, . . . , n; k = 1, 2, . . . ,m), r > 1 and σ > 0

such that
∑m
k=1 qk = r − 1 and

rαiβi(t)−
n∑
j=1

m∑
k=1

ᾱjqk
(
c+ij (t)F

rµkj
qk
j + d+ij (t)F

rωkj
qk
j

)
−
1
pi

n∑
j=1

ᾱjpj
(
c+ij (t)F

r(1−
m∑
k=1

µkj)

j + d+ij (t)F
r(1−

m∑
k=1

ωkj)

j

)
≥ σ > 0,

for t ∈ [0,∞) and i = 1, 2, . . . , n.
(H∗4) There exist positive constants p1, p2, . . . , pn and σ such that

αiβi(t)−
1
pi

n∑
j=1

ᾱjpjFj
(
c+ij (t)+ d

+

ij (t)
)
≥ σ > 0, for all t ∈ [0,∞) and i = 1, 2, . . . , n.

(H5) There exist positive constants Gik and Hik such that

|gik(u)− gik(v)| ≤ Gik|u− v|, |hik(u)− hik(v)| ≤ Hik|u− v|, max
1≤i≤n,1≤k

ᾱi

αi
Hik + max

1≤i≤n,1≤k

ᾱi

αi
Gik < 1

for all u, v ∈ R and i = 1, 2, . . . , n; k = 1, 2, . . ..
Define

PC([−τ , 0], R) =
{
ψ̂ : [−τ , 0] → R|ψ̂(t−) = ψ̂(t), for t ∈ [−τ , 0], ψ̂(t+) exists and ψ̂(t+) = ψ̂(t)

for all but at most a finite number of points t ∈ [−τ , 0].
}
,

PC([−τ , 0], Rn) =
{
ψ = (ψ1, ψ2, . . . , ψn)

T
|ψi ∈ PC([−τ , 0], R), i = 1, 2, . . . , n.

}
.

For any ψ̂ ∈ PC([−τ , 0], R), ψ = (ψ1, ψ2, . . . , ψn)
T
∈ PC([−τ , 0], Rn), define ‖ · ‖τ and ‖ · ‖nτ as ‖ψ̂‖τ =

sup−τ≤s≤0 |ψ̂(s)| and ‖ψ‖nτ = max1≤i≤n ‖ψi‖τ , respectively.
Moreover, we define xt ∈ PC([−τ , 0], Rn) by xt(s) = x(t + s) for−τ ≤ s ≤ 0.
We assume that (1.1) has the following initial conditions

xi(s) = φi(s), for − τ ≤ s ≤ 0, (1.2)

where φ = (φ1, φ2, . . . , φn)T ∈ PC([−τ , 0], Rn). According to [13], the initial value problem (1.1) and (1.2) has the unique
solution x(t, φ) under assumptions (H3) and (H5).
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