Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Properties of certain analytic multivalent functions defined by a linear operator

Neng Xu^a, M.K. Aouf^{b,*}

^a Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, China ^b Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

ARTICLE INFO

Article history: Received 23 December 2007 Received in revised form 5 October 2008 Accepted 16 October 2008

Keywords: Analytic function Multivalent function Convolution Linear operator Integral operator Subordination

ABSTRACT

Let $A(p, k)(p, k \in N = \{1, 2, 3, ...\})$ be the class of functions $f(z) = z^p + a_{p+k}z^{p+k} + \cdots$ which are analytic in the unit disk $E = \{z : |z| < 1\}$. By using a linear operator $L_{p,k}(a, c)$, we introduce a new subclass $T_{p,k}(a, c, \delta; h)$ of A(p, k) and derive some interesting properties for the class $T_{p,k}(a, c, \delta; h)$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let $A(p, k)(p, k \in N = \{1, 2, 3, ...\})$ be the class of functions of the form

$$f(z) = z^{p} + \sum_{m=k}^{\infty} a_{p+m} z^{p+m}$$
(1.1)

which are analytic in the unit disk $E = \{z : |z| < 1\}$. We denote $A(p, 1) = A_p, A_1 = A$. Also, we denote by K and $S^*(\alpha)$ the usual subclasses of A whose members are convex and starlike of order α , $0 \le \alpha < 1$, in E, respectively. The class A(p, k) is closed under the Hadamard product (or convolution)

$$f(z) * g(z) \equiv (f * g)(z) = z^{p} + \sum_{m=k}^{\infty} a_{p+m} b_{p+m} z^{p+m} = (g * f)(z) \quad (z \in E),$$

where

$$f(z) = z^p + \sum_{m=k}^{\infty} a_{p+m} z^{p+m}, \qquad g(z) = z^p + \sum_{m=k}^{\infty} b_{p+m} z^{p+m}.$$

Let the function $\varphi_{p,k}(a, c)$ be defined by

$$\varphi_{p,k}(a,c;z) = z^p + \sum_{m=k}^{\infty} \frac{(a)_m}{(c)_m} z^{p+m} \quad (z \in E),$$
(1.2)

* Corresponding author.

E-mail addresses: xun@cslg.edu.cn (N. Xu), mkaouf127@yahoo.com (M.K. Aouf).

^{0898-1221/\$ -} see front matter S 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2008.10.100

where $c \neq 0, -1, -2, ..., (\lambda)_0 = 1$ and $(\lambda)_m = \lambda(\lambda + 1) \cdots (\lambda + m - 1)$ for $m \in N$. Carlson and Shaffer [1] defined a convolution operator on A by

$$L(a, c)f(z) = \varphi_{1,1}(a, c) * f(z) \quad (f(z) \in A).$$
(1.3)

Similarly, we define a linear operator $L_{p,k}(a, c)$ on A(p, k) by

$$L_{p,k}(a,c)f(z) = \varphi_{p,k}(a,c) * f(z) \quad (f(z) \in A(p,k)).$$
(1.4)

It is easily seen from (1.2) and (1.4) that

$$z(L_{p,k}(a,c)f(z))' = aL_{p,k}(a+1,c)f(z) - (a-p)L_{p,k}(a,c)f(z).$$
(1.5)

Clearly $L_{p,k}(a, c)$ maps A(p, k) into itself and $L_{p,k}(c, c)$ is identity. If $a \neq 0, -1, -2, ...$, then $L_{p,k}(a, c)$ has an inverse $L_{p,k}(c, a)$. Note also that

$$L_{p,k}(p+1,p)f(z) = zf'(z)/p.$$

For a real number $\lambda > -p$ and a function $f(z) \in A(p, k)$, we define the generalized Libera integral operator $J_{p,\lambda}$ (see [2]) by

$$J_{p,\lambda}f(z) = \frac{\lambda+p}{z^{\lambda}} \int_0^z t^{\lambda-1} f(t) dt$$
(1.6)

and the generalized Ruscheweyh derivative $D^{\lambda+p-1}$ (see [3]) by

$$D^{\lambda+p-1}f(z) = f(z) * \frac{z^p}{(1-z)^{\lambda+p}}.$$
(1.7)

It can be easily verified that

 $L_{p,k}(\lambda + p, \lambda + p + 1)f(z) = J_{p,\lambda}f(z)$ (1.8)

and that

$$L_{p,k}(\lambda + p, 1)f(z) = D^{\lambda + p - 1}f(z).$$
(1.9)

Also, we write $L_{p,1}(a, c) = L_p(a, c)$, $L_1(a, c) = L(a, c)$ and $\varphi_{p,1}(a, c) = \varphi_p(a, c)$.

Let f(z) and g(z) be analytic in E. We say that the function f(z) is subordinate to g(z) in E, and we write $f(z) \prec g(z)$, if there exists an analytic function w(z) in E such that $|w(z)| \le |z|$ and f(z) = g(w(z)) for $z \in E$. If g(z) is univalent in E, then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(E) \subset g(E)$.

Throughout our present investigation, we assume that $p, k \in N$, $a > 0, c \neq 0, -1, -2, ..., \delta \ge 0$ and h(z) is analytic and convex univalent in E with h(0) = 1.

By using the operator $L_{p,k}(a, c)$, we now introduce and investigate the following subclass of A(p, k).

Definition. A function $f(z) \in A(p, k)$ is said to be in the class $T_{p,k}(a, c, \delta; h)$ if and only if

$$(1-\delta)\frac{L_{p,k}(a,c)f(z)}{z^p} + \delta\frac{L_{p,k}(a+1,c)f(z)}{z^p} \prec h(z) \quad (z \in E).$$
(1.10)

Also, we write $T_{p,1}(a, c, \delta; h) = T_p(a, c, \delta; h)$ and $T_1(a, c, \delta; h) = T(a, c, \delta; h)$.

Remark 1. In a recent paper, Yang and Liu [4] introduced a subclass $H(p, k, \lambda, \delta, A, B)$ of A(p, k) and satisfied the following subordination condition:

$$(1-\delta)\frac{D^{\lambda+p-1}f(z)}{z^p} + \delta\frac{D^{\lambda+p}f(z)}{z^p} \prec \frac{1+Az}{1+Bz}$$

where $\delta > 0$, $\lambda > -p$, $-1 \le B < A \le 1$.

It is easy to see that, if we set $a = \lambda + p$, c = 1 and $h(z) = \frac{1+Az}{1+Bz}$ in the class $T_{p,k}(a, c, \delta; h)$, then it reduces to the class $H(p, k, \lambda, \delta, A, B)$.

In this paper, we aim at proving such results as inclusion relationships and convolution properties for the class $T_{p,k}(a, c, \delta; h)$. The results presented here would provide extensions of those given in a number of earlier works (see Yang and Liu [4], Aouf [5,6], Obradovic [7], Patel and Rout [8], Saitoh [9] and others).

Download English Version:

https://daneshyari.com/en/article/473089

Download Persian Version:

https://daneshyari.com/article/473089

Daneshyari.com