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a b s t r a c t

Let A(p, k)(p, k ∈ N = {1, 2, 3, . . .}) be the class of functions f (z) = zp + ap+kzp+k + · · ·
which are analytic in the unit disk E = {z : |z| < 1}. By using a linear operator Lp,k(a, c), we
introduce a new subclass Tp,k(a, c, δ; h) of A(p, k) and derive some interesting properties
for the class Tp,k(a, c, δ; h).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let A(p, k)(p, k ∈ N = {1, 2, 3, . . .}) be the class of functions of the form

f (z) = zp +
∞∑
m=k

ap+mzp+m (1.1)

which are analytic in the unit disk E = {z : |z| < 1}. We denote A(p, 1) = Ap, A1 = A. Also, we denote by K and S∗(α) the
usual subclasses of A whose members are convex and starlike of order α, 0 ≤ α < 1, in E, respectively. The class A(p, k) is
closed under the Hadamard product (or convolution)

f (z) ∗ g(z) ≡ (f ∗ g)(z) = zp +
∞∑
m=k

ap+mbp+mzp+m = (g ∗ f )(z) (z ∈ E),

where

f (z) = zp +
∞∑
m=k

ap+mzp+m, g(z) = zp +
∞∑
m=k

bp+mzp+m.

Let the function ϕp,k(a, c) be defined by

ϕp,k(a, c; z) = zp +
∞∑
m=k

(a)m
(c)m

zp+m (z ∈ E), (1.2)
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where c 6= 0,−1,−2, . . . , (λ)0 = 1 and (λ)m = λ(λ + 1) · · · (λ + m − 1) for m ∈ N . Carlson and Shaffer [1] defined a
convolution operator on A by

L(a, c)f (z) = ϕ1,1(a, c) ∗ f (z) (f (z) ∈ A). (1.3)

Similarly, we define a linear operator Lp,k(a, c) on A(p, k) by

Lp,k(a, c)f (z) = ϕp,k(a, c) ∗ f (z) (f (z) ∈ A(p, k)). (1.4)

It is easily seen from (1.2) and (1.4) that

z(Lp,k(a, c)f (z))′ = aLp,k(a+ 1, c)f (z)− (a− p)Lp,k(a, c)f (z). (1.5)

Clearly Lp,k(a, c)mapsA(p, k) into itself and Lp,k(c, c) is identity. If a 6= 0,−1,−2, . . ., then Lp,k(a, c)has an inverse Lp,k(c, a).
Note also that

Lp,k(p+ 1, p)f (z) = zf ′(z)/p.

For a real number λ > −p and a function f (z) ∈ A(p, k), we define the generalized Libera integral operator Jp,λ (see [2])
by

Jp,λf (z) =
λ+ p
zλ

∫ z

0
tλ−1f (t)dt (1.6)

and the generalized Ruscheweyh derivative Dλ+p−1 (see [3]) by

Dλ+p−1f (z) = f (z) ∗
zp

(1− z)λ+p
. (1.7)

It can be easily verified that

Lp,k(λ+ p, λ+ p+ 1)f (z) = Jp,λf (z) (1.8)

and that

Lp,k(λ+ p, 1)f (z) = Dλ+p−1f (z). (1.9)

Also, we write Lp,1(a, c) = Lp(a, c), L1(a, c) = L(a, c) and ϕp,1(a, c) = ϕp(a, c).
Let f (z) and g(z) be analytic in E. We say that the function f (z) is subordinate to g(z) in E, and we write f (z) ≺ g(z), if

there exists an analytic functionw(z) in E such that |w(z)| ≤ |z| and f (z) = g(w(z)) for z ∈ E. If g(z) is univalent in E, then
f (z) ≺ g(z) is equivalent to f (0) = g(0) and f (E) ⊂ g(E).
Throughout our present investigation, we assume that p, k ∈ N , a > 0, c 6= 0,−1,−2, . . ., δ ≥ 0 and h(z) is analytic

and convex univalent in E with h(0) = 1.
By using the operator Lp,k(a, c), we now introduce and investigate the following subclass of A(p, k).

Definition. A function f (z) ∈ A(p, k) is said to be in the class Tp,k(a, c, δ; h) if and only if

(1− δ)
Lp,k(a, c)f (z)

zp
+ δ
Lp,k(a+ 1, c)f (z)

zp
≺ h(z) (z ∈ E). (1.10)

Also, we write Tp,1(a, c, δ; h) = Tp(a, c, δ; h) and T1(a, c, δ; h) = T (a, c, δ; h).

Remark 1. In a recent paper, Yang and Liu [4] introduced a subclass H(p, k, λ, δ, A, B) of A(p, k) and satisfied the following
subordination condition:

(1− δ)
Dλ+p−1f (z)

zp
+ δ
Dλ+pf (z)
zp

≺
1+ Az
1+ Bz

,

where δ > 0, λ > −p,−1 ≤ B < A ≤ 1.

It is easy to see that, if we set a = λ + p, c = 1 and h(z) = 1+Az
1+Bz in the class Tp,k(a, c, δ; h), then it reduces to the class

H(p, k, λ, δ, A, B).
In this paper, we aim at proving such results as inclusion relationships and convolution properties for the class

Tp,k(a, c, δ; h). The results presented here would provide extensions of those given in a number of earlier works (see Yang
and Liu [4], Aouf [5,6], Obradovic [7], Patel and Rout [8], Saitoh [9] and others).
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