Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Sufficiency and duality for multiobjective variational control problems with *G*-invexity

Jianke Zhang^{a,b,*}, Sanyang Liu^a, Lifeng Li^{a,b}, Quanxi Feng^{a,c}

^a School of Science, Xidian University, Xi'an 710071, China

^b School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China

^c School of Science, Guilin University of Technology, Guilin 541004, China

ARTICLE INFO

Article history: Received 26 July 2011 Received in revised form 24 November 2011 Accepted 28 November 2011

Keywords: Multiobjective variational control problem Sufficient optimality conditions Duality G-invex functions

1. Introduction

ABSTRACT

Antczak introduced vector-valued *G*-invex functions in 2009, which is a new class of generalized convex functions for differentiable multiobjective programming problems. In this paper, we extend the vector-valued *G*-invex functions to multiobjective variational control problems. By using the new concepts, a number of sufficient optimality results and Mond–Weir type duality results are obtained for multiobjective variational control programming problems.

© 2011 Elsevier Ltd. All rights reserved.

Optimal control problems are important problems, which have been widely used in industrial process control, flight control design and other diverse fields. From 1964, a number of duality results for single objective control problem have been obtained in the literature; see [1–3] and the references therein. In 1988, Mond and Smart [4] obtained duality results for control problems under invex conditions. Bhatia and Kumar [5] extended the work of Mond and Hanson [3] to multiobjective control problems and obtained duality results under ρ -invexity assumptions and its generalizations. Under invexity conditions, Chen [6] studied duality theorems for multiobjective control problems.

In recent years, Nahak and Nanda [7] studied duality results for multiobjective variational control problems under generalized (F, ρ)-convexity conditions. Under the same conditions as [7], Patel [8] formulated Wolfe and Mond–Weir type duals for multiobjective variational control problems and obtained weak and strong duality theorems by using the concept of efficiency. Nahak and Nanda [9] established sufficiency optimality criteria and duality results for multiobjective variational control problems. Recently, Ahmad and Sharma [10] extended the concept of (F, α , ρ , θ)-V-convexity to variational control problems and obtained sufficient optimality conditions, Wolfe type and Mond–Weir type duality results for multiobjective variational control problems. Patel [11] extended the class of V-univex type I functions and their generalizations to multiobjective variational control problems and established sufficiency and mixed type duality results under generalized V-univexity type I conditions.

In very recent years, Antczak [12] introduced a new class of vector-valued *G*-invex functions and their generalizations. Antczak also established some sufficiency conditions and several duality [13] results for multiobjective programming under vector-valued *G*-invexity requirements.

^{*} Corresponding author at: School of Science, Xidian University, Xi'an 710071, China. E-mail address: jiankezh@163.com (J. Zhang).

^{0898-1221/\$ –} see front matter s 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.11.049

In this paper, we extend the concept of vector-valued *G*-invexity in [12,13] to multiobjective variational control problems. We establish various sufficiency optimality criteria and duality results for multiobjective variational control programming problems under the assumptions of vector-valued *G*-invexity and their generalizations.

2. Preliminaries

Let \mathbb{R}^n be *n*-dimensional Euclidean space, and \mathbb{R}^n_+ be its nonnegative orthant. For any $x = (x_1, x_2, \dots, x_n)^T$, $y = (x_1, \dots, x_n)^T$, $y = (x_1, \dots, x_n)$ $(y_1, y_2, \ldots, y_n)^T$ be in \mathbb{R}^n . We define

(i) x = y if and only if $x_i = y_i$ for all i = 1, 2, ..., n;

- (ii) x < y if and only if $x_i < y_i$ for all i = 1, 2, ..., n;
- (iii) $x \leq y$ if and only if $x_i \leq y_i$ for all i = 1, 2, ..., n;
- (iv) x < y if and only if $x \le y$ and $x \ne y$.

Let I = [a, b] be a real interval and $f : I \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^p$, $g : I \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^m$ and $h: I \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be continuously differentiable functions. We denote $M = \{1, 2, \dots, m\}$ and $K = \{1, 2, \dots, n\}$. Consider the function $f(t, x(t), \dot{x}(t), u(t), \dot{u}(t))$, where $x : I \to \mathbb{R}^n$ with derivative \dot{x} and $u : I \to \mathbb{R}^m$ with derivative \dot{u} , t is the independent variable, x is the state variable and u is the control variable. u(t) is related to x(t)through the state equation $h(t, x(t), \dot{x}(t), u(t), \dot{u}(t)) = 0$. The symbol $()^T$ denotes for the transpose. For a real function $f(t, x(t), \dot{x}(t), u(t), \dot{u}(t)), f_t^i, f_x^i, f_u^i$ and f_u^i denote the partial derivative of $f_i, i \in P = \{1, 2, \dots, p\}$ with respect to t, x, \dot{x}, u and \dot{u} , respectively. For example,

$$\begin{aligned} f_x^i &= \left(\frac{\partial f_i}{\partial x_1}, \frac{\partial f_i}{\partial x_2}, \dots, \frac{\partial f_i}{\partial x_n}\right), \qquad f_x^i &= \left(\frac{\partial f_i}{\partial \dot{x}_1}, \frac{\partial f_i}{\partial \dot{x}_2}, \dots, \frac{\partial f_i}{\partial \dot{x}_n}\right) \\ f_u^i &= \left(\frac{\partial f_i}{\partial u_1}, \frac{\partial f_i}{\partial u_2}, \dots, \frac{\partial f_i}{\partial u_m}\right), \qquad f_u^i &= \left(\frac{\partial f_i}{\partial \dot{u}_1}, \frac{\partial f_i}{\partial \dot{u}_2}, \dots, \frac{\partial f_i}{\partial \dot{u}_m}\right) \end{aligned}$$

Similarly, $g_t^j, g_x^j, g_x^j, g_u^j, g_u^j$ and $h_t^k, h_x^k, h_u^k, h_u^k$ can be defined. Let $S(I, \mathbb{R}^n)$ denote the space of piecewise smooth functions x with norm $||x|| = ||x||_{\infty} + ||Dx||_{\infty}$, where the differentiation operator D is given by

$$u = Dx \iff x(t) = \alpha + \int_a^t u(s)ds,$$

where α is a given boundary value. Therefore, $D = \frac{d}{dt}$ except at discontinuities. Let X, Y denote the space of all piecewise smooth functions $x : I \to \mathbb{R}^n$ and $u : I \to \mathbb{R}^m$. Let $F^i : X \times Y \longrightarrow \mathbb{R}$ defined by $F_i(x(t), u(t)) = \int_a^b f^i(t, x(t), \dot{x}(t), u, \dot{u}(t)) dt$ be Frechet differentiable. For notational convenience, we use $f(t, x, \dot{x}, u, \dot{u})$ for $f(t, x(t), \dot{x}(t), u(t), \dot{u}(t))$.

In 2009, Antczak [12,13] introduced the concept of vector-valued G-invex function. Let $f = (f_1, f_2, \ldots, f_p) : C \to \mathbb{R}^p$ be a vector-valued differentiable function defined on a nonempty open set $C \subset \mathbb{R}^n$, and $I_{f_i}(C)$, i = 1, ..., p, be the range of f_i , that is, the image of C under f_i .

Definition 2.1 ([12]). Let $f : C \to \mathbb{R}^p$ be a vector-valued differentiable function defined on a nonempty set $C \subset \mathbb{R}^n$ and $u \in C$. If there exist a differentiable vector-valued function $G_f = (G_{f_1}, \ldots, G_{f_p}) : \mathbb{R} \to \mathbb{R}^p$ such that any its component $G_{f_i}: I_{f_i} \to \mathbb{R}$ is a strictly increasing function on its domain and a vector-valued function $\eta: C \times C \to \mathbb{R}^n$ such that, for all $x \in C(x \neq u)$ and for any $i = 1, \ldots, p$,

$$G_{f_i}(f_i(x)) - G_{f_i}(f_i(u)) - G'_{f_i}(f_i(u)) \nabla f_i(u) \eta(x, u) \ge 0 \quad (>),$$

then f is said to be a (strictly) vector G_f -invex function at u on C with respect to η . If the inequality is satisfied for each $u \in C$, then *f* is vector G_f -invex on *C* with respect to η .

From now onward, we establish some classes of new G-invex functions.

Definition 2.2. A vector function $F = (F^1, F^2, ..., F^p)$ is said to be *G*-invex at $(x^*, u^*) \in (X, Y)$, if there exist differentiable functions $\eta(t, x, x^*, u, u^*) : I \times X \times X \times Y \times Y \to \mathbb{R}^n$ with $\eta(t, x, x^*, u, u^*) = 0$ at t if $x(t) = x^*(t), \xi(t, x, x^*, u, u^*) : t \to \mathbb{R}^n$ $I \times X \times X \times Y \times Y \to \mathbb{R}^m$ and a differentiable vector-valued function $G_f = (G_{f_1}, \dots, G_{f_p}) : \mathbb{R} \to \mathbb{R}^p$ such that any its component $G_{f_i} : I_{f_i}(C) \to \mathbb{R}$ is a strictly increasing function on its domain, for each $x, x^* \in X, u, u^* \in Y$, and for $i = 1, 2, \ldots, p$

$$\begin{aligned} G_{f_i}(F_i(x,u)) &- G_{f_i}(F_i(x^*,u^*)) \geq G'_{f_i}(F_i(x^*,u^*)) \int_a^b \left\{ \eta(t,x,x^*,u,u^*)^T (f_x^i(t,x^*,\dot{x}^*,u^*,\dot{u}^*) \\ &- \frac{d}{dt} f_{\dot{x}}^i(t,x^*,\dot{x}^*,u^*,\dot{u}^*)) + \xi(t,x,x^*,u,u^*)^T (f_u^i(t,x^*,\dot{x}^*,u^*,\dot{u}^*) - \frac{d}{dt} f_{\dot{u}}^i(t,x^*,\dot{x}^*,u^*,\dot{u}^*)) \right\} dt. \end{aligned}$$

Download English Version:

https://daneshyari.com/en/article/473123

Download Persian Version:

https://daneshyari.com/article/473123

Daneshyari.com