

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Hadamard product of certain meromorphic starlike and convex functions

R.M. El-Ashwah*, M.K. Aouf

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

ARTICLE INFO

Article history: Received 15 August 2007 Received in revised form 23 April 2008 Accepted 10 July 2008

Keywords: Analytic Meromorphic Positive coefficients Hadamard product

ABSTRACT

In this paper, the authors establish certain results concerning the Hadamard product for two classes related to starlike and convex univalent meromorphic functions of order α and type β with positive coefficients.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, let the functions of the form:

$$\varphi(z) = c_1 z - \sum_{n=0}^{\infty} c_n z^n \quad (c_1 > 0, c_n \ge 0), \tag{1.1}$$

and

$$\psi(z) = d_1 z - \sum_{n=2}^{\infty} d_n z^n \quad (d_1 > 0, d_n \ge 0)$$
(1.2)

be regular and univalent in the unit disc $U = \{z : |z| < 1\}$; and let

$$f(z) = \frac{a_0}{z} + \sum_{n=1}^{\infty} a_n z^n \quad (a_0 > 0, a_n \ge 0),$$
(1.3)

$$f_i(z) = \frac{a_{0,i}}{z} + \sum_{n=1}^{\infty} a_{n,i} z \quad (a_{0,i} > 0, a_{n,i} \ge 0),$$
(1.4)

$$g(z) = \frac{b_0}{z} + \sum_{n=1}^{\infty} b_n z^n \quad (b_0 > 0, b_n \ge 0), \tag{1.5}$$

and

$$g_j(z) = \frac{b_{0,j}}{z} + \sum_{n=1}^{\infty} b_{n,j} z^n \quad (b_{0,j} > 0, b_{n,j} \ge 0),$$
(1.6)

E-mail addresses: elashwah@mans.edu.eg (R.M. El-Ashwah), mkaouf127@yahoo.com (M.K. Aouf).

^{*} Corresponding author.

be regular and univalent in the punctured disc $U^* = \{z : 0 < |z| < 1\}$.

For a function f(z) defined by (1.3) (with $a_0 = 1$) we define

$$I^{0}f(z) = f(z),$$

$$I^{1}f(z) = zf'(z) + \frac{2}{z},$$

$$I^{2}f(z) = z(I^{1}f(z))' + \frac{2}{z}$$

and for k = 1, 2, 3, ...

$$I^{k}f(z) = z \left(I^{k-1}f(z)\right)' + \frac{2}{z}$$
$$= \frac{1}{z} + \sum_{n=1}^{\infty} n^{k} a_{n} z^{n}.$$

The operator I^k was introduced by Frasin and Darus [1].

With the help of the differential operator I^k , we define the classes $\sum S_0^*(k,\alpha,\beta)$ and $\sum C_0(k,\alpha,\beta)$ as follows: Denote by $\sum S_0^*(k, \alpha, \beta)$, the class of functions f(z) which satisfy the condition

$$\left| \frac{\frac{z(l^{k}f(z))'}{l^{k}f(z)} + 1}{\frac{z(l^{k}f(z))'}{l^{k}f(z)} + 2\alpha - 1} \right| < \beta$$

$$(z \in U^{*}, 0 \le \alpha < 1, 0 < \beta \le 1, k \in N_{0}).$$
(1.7)

Let $\sum C_0^*(k, \alpha, \beta)$ be the class of functions f(z) for which $-zf'(z) \in \sum S_0^*(k, \alpha, \beta)$.

- (i) $\sum S_0^*(0, \alpha, \beta) = \sum S_0^*(\alpha, \beta)$, is the class of of meromorphic starlike functions of order α (0 $\leq \alpha < 1$) and type β (0 < β ≤ 1)with a_0 = 1; studied by Mogra et al. [2];
- (ii) $\sum_{\alpha} C_0^*(0, \alpha, \beta) = \sum_{\alpha} C_0^*(\alpha, \beta)$, is the class of meromorphic convex functions of order $\alpha (0 \le \alpha < 1)$ and type $\beta (0 < \beta \le 1)$ with positive cofficients;
- (iii) $\sum S_0^*(k, \alpha, 1) = \sum^*(k, \alpha)$ (Frasin and Darus [1]).

Using similar arguments as given in [1], we can easily prove the following results for functions in the classes $\sum S_0^*(k,\alpha,\beta)$ and $\sum C_0^*(k, \alpha, \beta)$.

A function $f(z) \in \sum S_0^*(k, \alpha, \beta)$ if, and only if,

$$\sum_{n=1}^{\infty} n^{k} [(1+\beta)n + (2\alpha - 1)\beta + 1] a_{n} \le 2\beta (1-\alpha) a_{0};$$
(1.8)

and $f(z) \in \sum C_0^*(k, \alpha, \beta)$ if, and only if,

$$\sum_{n=1}^{\infty} n^{k+1} [(1+\beta)n + (2\alpha - 1)\beta + 1] a_n \le 2\beta (1-\alpha) a_0.$$
 (1.9)

The quasi-Hadamard product of two or more functions has recently been defined and used by Owa [3-5], Kumar [6-8], Mogra [9,10], Aouf and Darwish [11,12], Hossen [13] and Sekine [14], Accordingly, the quasi-Hadamard product of two functions $\varphi(z)$ and $\psi(z)$ given by (1.1) and (1.2) is defined by

$$\varphi * \psi(z) = c_1 d_1 z - \sum_{k=2}^{\infty} c_n d_n z^n.$$

Let us define the Hadamard product of two meromorphic univalent functions f(z) and g(z) by

$$f * g(z) = \frac{a_0 b_0}{z} + \sum_{n=1}^{\infty} a_n b_n z^n.$$
 (1.10)

The Hadamard product of more than two meromorphic functions can similarly be defined.

In [10], Mogra obtained certain results concerning the quasi-Hadamard product of two or more functions in $\sum S_0^*(0, \alpha, \beta) = \sum S_0^*(\alpha, \beta)$ and $\sum C_0^*(0, \alpha, \beta) = \sum C_0^*(\alpha, \beta)$. In this paper, we introduce the following class of meromorphic univalent functions in U^* .

Download English Version:

https://daneshyari.com/en/article/473130

Download Persian Version:

https://daneshyari.com/article/473130

Daneshyari.com