Journal of Asian Earth Sciences 53 (2012) 151-175

Contents lists available at SciVerse ScienceDirect

Journal of Asian Earth Sciences

journal homepage: www.elsevier.com/locate/jseaes

Temporal–spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: Constraints from zircon U–Pb ages and Hf isotopes

Yi-Gang Xu^{a,*}, Qi-Jun Yang^{a,b}, Jiang-Bo Lan^a, Zhen-Yu Luo^a, Xiao-Long Huang^a, Yu-Ruo Shi^c, Lie-Wen Xie^d

^a State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China ^b Guilin Institute of Technology, Guilin 541004, PR China

^c Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, PR China

^d State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, PR China

ARTICLE INFO

Article history: Received 21 March 2011 Received in revised form 22 May 2011 Accepted 9 June 2011 Available online 20 November 2011

Keywords: SHRIMP dating Hf isotope Zircons Granitic batholiths Subduction Crustal thickening Cordilleran-style orogen Gaoligong-Tengliang-Yingjiang belt Western Yunnan

ABSTRACT

Considerable progress has recently been made regarding temporal and spatial distribution of magmatism in the Lhasa Terrane. However the eastward and southeastward correlation of these Tibetan magmatic suites in western Yunnan and Burma remains poorly constrained. This paper reports zircon U-Pb dating and Hf isotopic compositions of granites in the Gaoligong-Tengliang-Yingjiang area, west Yunnan. It reveals three episodes of plutonism, and more importantly a southwestward magmatic migration. The Gaoligong batholiths in the northeast were mainly emplaced during early Cretaceous (126-121 Ma) and comprised predominantly S-type granites with negative zircon ε Hf values ($\varepsilon_{Hf} = -2 \sim -12$). The Tengliang granites, situated southwest of the Gaoligong belt, were emplaced in late Cretaceous (68-76 Ma) and also displayed a strong peraluminous affinity and negative ε_{Hf} (-5~-14), indicating a provenance from a Proterozoic sedimentary source with little mantle contribution. The youngest phase of magmatism (52-66 Ma) occurred in Yingjiang, southwestmost of the study area. It is composed of S-type granites (ϵ Hf = -2~-12) in east Yingjiang and I-type granites (ϵ _{Hf} = -4~+6) in west Yingjiang, near the China-Burma border. The late Cretaceous-early Cenozoic plutons in the Tengliang and Yingjiang area are thus considered as the northern continuation of the late Cretaceous magmatic arc (west), which comprises I-type granites and andesitic rocks, and of the belt of predominant S-type granites (east) in Burma, Thailand and Malaysia. Such a chemical polarity of the dual I-type and S-type granites is strongly reminiscent of the northern American Cordillera, indicating a Cordilleran-style continental margin during the late Cretaceous-early Cenozoic. While the magmatic arc was related to eastward subduction of the Neo-Tethys beneath the Asian continent, the S-type granites represented the melting products of thickened crust in the hinterland, in response to subduction-induced decrease in lithospheric strength and compressive plate-convergence forces and to a less degree to the collision between Burma and Sundaland blocks. The Gaoligong early Cretaceous granites, which bear strong similarities in lithology, geochemistry and emplacement age to those in the northern magmatic belt in the Lhasa Terrane, are also the magmatic expression of crustal thickening. This crustal thickening may have stemmed from the collision between the Lhasa Block and the Oiangtang Block in late Jurassic and Early Cretaceous. The magmatism in western Yunnan thus recorded a long-term subduction of the Neo-Tethyan plate, enhanced by continental collisions at different time.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The large scale northward penetration of the Indian Plate into Asia since the early Cenozoic resulted in the formation of the most spectacular collisional orogen in world. This has stimulated considerable investigation into how this largest orogenic belt was formed and when the Tibetan plateau was uplifted (Tapponnier et al., 2001; Harrison et al., 1992; Turner et al., 1993; Chung et al., 1998; Yin and Harrison, 2000). Accompanied by the deformation and uplift, plutonism and volcanism occurred in the interior of the plateau, providing opportunities to characterize the magmatic response during the evolution of the Tibetan Plateau (e.g., Chung et al., 2005). Dating

^{*} Corresponding author. Tel.: +86 20 85290109; fax: +86 20 85290261. *E-mail address:* yigangxu@gig.ac.cn (Y.-G. Xu).

^{1367-9120/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.jseaes.2011.06.018

Table 1

Zircon U-Pb isotopic data of the Gaoligong-Tengliang-Yingjiang batholiths.

_	Spot No.	f ²⁰⁶ Pb*	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁸ Pb	\pm % (l σ)	²⁰⁷ Pb/ ²³³ U	\pm % (l σ)	200 Pb/ 230 U (1 σ)	±% (Ma)	200 Pb/ 238 U (Ma)	Age
SHRIMP													
GLS-36 (98°35′07″E, 27°45′32″N)													
	11	3 64	269	235	0.90	0.04100	34	0 1040	35	0.01827	44	1167	+5 1
	21	2 15	272	185	0.20	0.04420	12	0 1 2 4 0	14	0.02030	6.5	1297	+8.4
	3.1	1.0/	614	527	0.70	0.04340	12	0.1240	17	0.02050	3.8	1183	+4.5
	J.1 4.1	0.24	679	412	0.05	0.04340	10	0.1110	6.2	0.01832	2.0	117.0	+4.4
	4.1	0.34	678	412	0.63	0.05140	4.9	0.1309	6.2	0.01846	3.8	117.9	±4.4
	5.1	0.53	846	/11	0.87	0.04930	4.1	0.1321	5.6	0.01942	3.8	124.0	±4.6
	6.1	0.79	1123	1456	1.34	0.04670	4.8	0.1287	6.1	0.01998	3.8	127.5	±4.7
	7.1	1.02	477	361	0.78	0.04860	4.6	0.1329	6.1	0.01985	3.9	126.7	±4.9
	8.1	2.48	245	213	0.90	0.04820	17	0.1260	17	0.01891	4.8	120.8	±5.7
	9.1	1.41	458	524	1.18	0.05470	9	0.1510	9.7	0.02002	3.8	127.8	±4.9
	10.1	0.59	1003	334	0.34	0.04730	4.6	0.1279	5.9	0.01962	3.7	125.2	±4.6
	11.1	0.31	1695	1082	0.66	0.04860	2	0.1358	4.2	0.02026	3.7	129.3	±4.8
	12.1	0.56	491	462	0.97	0.04940	4	0.1334	5.6	0.01958	3.8	125.0	+4.7
	13.1	2 59	208	179	0.89	0.05560	8.8	0.1520	97	0.01984	4	126.7	+5.1
	1/1	0.37	714	768	1 1 1	0.05180	3.6	0.1450	7.8	0.02020	7	120.7	+8.0
	14.1	0.57	/14	700	1.11	0.03100	5.0	0.1450	7.0	0.02020	,	123.1	10.5
GLS-58 (98°47′19″E, 27°09′52″N)													
	1.1	0.52	1216	637	0.54	0.04720	4.5	0.1601	4.7	0.02460	1.6	156.7	±2.5
	2.1	0.69	902	412	0.47	0.04830	3.3	0.1278	3.7	0.01919	1.7	122.5	±2.1
	31	0.47	1160	581	0.52	0.05010	4	01325	45	0.01919	2	122.5	+2.5
	41	0.46	1303	743	0.59	0.04850	35	0.1305	3.8	0.01951	15	124.6	+1 9
	5.1	0.10	1070	745	0.72	0.05200	2.5	0.1308	33	0.01951	1.5	124.6	+2.0
	J.1 C 1	0.11	1070	745	0.72	0.03200	2.0	0.1390	3.3	0.01951	1.0	124.0	12.0
	0.1	0.02	1202	723	0.62	0.04870	7.4	0.1260	7.0	0.01900	1.7	121.7	±2.0
	7.1	1.02	816	533	0.67	0.04490	/	0.11/2	7.2	0.01892	1.7	120.8	±2.0
	8.1	0.60	703	438	0.64	0.05240	5.1	0.1417	5.3	0.01961	1.6	125.2	±2.0
	9.1	0.88	784	465	0.61	0.04840	6.3	0.1228	6.5	0.01840	1.8	117.5	±2.1
	10.1	1.26	862	405	0.49	0.04550	5.8	0.1175	6	0.01873	1.6	119.6	±1.9
	11.1	0.26	1117	587	0.54	0.04970	4	0.1321	4.3	0.01929	1.5	123.2	±1.9
	12.1	0.62	1169	504	0.45	0.04470	8	0.1202	8.1	0.01951	1.5	124.6	±1.9
	13.1	0.41	974	598	0.63	0.05120	3.4	0.1359	3.7	0.01924	1.5	122.8	±1.9
	14.1	0.98	1391	902	0.67	0.04600	6.3	0.1219	6.5	0.01924	1.5	122.9	±1.9
	15.1	1 30	803	458	0.59	0.04750	59	0 1201	61	0.01832	17	117.0	+2.0
	1011	1.50	000	100	0.00	010 17 00	010	011201	011	0101002		11/10	-210
	GLS-62 (98	°49′37″E, 2	27°08′01″N)										
	1.1	0.67	1524	901	0.61	0.04670	4.3	0.1181	4.6	0.01832	1.6	117.1	±1.8
	2.1	0.10	4538	945	0.22	0.04757	1.3	0.1241	3	0.01892	2.7	120.9	±3.3
	3.1	0.23	2167	754	0.36	0.04800	2.5	0.1307	2.9	0.01976	1.5	126.2	±1.8
	4.1	0.47	657	404	0.64	0.04880	3.7	0.1224	4	0.01818	1.6	116.1	±1.9
	51	0.58	1523	1051	0.71	0.04980	48	0 1250	5	0.01819	16	1162	+1.8
	61	0.61	2236	851	0.39	0.04750	3.9	0 1405	42	0.02144	15	136.8	+2.0
	71	0.30	1314	658	0.52	0.04700	3	0.1264	3.4	0.01053	1.5	1247	+1.0
	7.1	0.55	1314	620	0.52	0.04700	5	0.1204	0.9	0.01333	1.0	124.7	+2.7
	0.1	0.92	969	779	0.07	0.04970	9.4	0.1170	9.6	0.01705	2.5	109.0	±2.7
	9.1	0.30	2581	//8	0.31	0.04720	3.0	0.1363	3.9	0.02095	1.5	133.0	±2.0
	10.1	0.16	3381	2326	0.71	0.04847	1.8	0.1157	2.5	0.01/31	1./	110.7	±1.9
	11.1	0.42	1326	758	0.59	0.04760	3.8	0.1217	4.2	0.01853	1.9	118.4	±2.2
	12.1	0.17	1355	571	0.44	0.04970	3.3	0.1459	3.7	0.02130	1.6	135.9	±2.2
	13.1	0.41	1435	843	0.61	0.04910	3.5	0.1259	3.8	0.01859	1.5	118.7	±1.8
	14.1	0.14	3406	2144	0.65	0.04980	2.2	0.1362	4.5	0.01985	3.9	126.7	±4.9
	15.1	0.45	1419	622	0.45	0.04450	6	0.1079	6.2	0.01757	1.6	112.3	±1.8
	16.1	0.20	3150	1710	0.56	0.04879	1.9	0.1288	2.3	0.01915	1.4	122.3	±1.7
	17.1	0.32	2804	1492	0.55	0.04870	2.4	0.1295	2.8	0.01926	1.4	123.0	±1.7
	18.1	0.62	1684	796	0.49	0.04980	3.6	0.1265	3.9	0.01843	1.5	117.8	±1.7
GSL-38 (98°35′07″ E, 27°45′32″ N)													
	1.1	0.52	1262	559	0.46	0.05140	4.7	0.1438	5.5	0.02029	2.9	129.5	±3.7
	2.1	0.81	1262	423	0.35	0.04700	5.4	0.0694	6	0.01071	2.5	68.7	±1.7
	3.1	1.84	521	631	1.25	0.04230	11	0.1100	12	0.01883	2.5	120.2	±3.0
	4.1	0.84	384	509	1.37	0.04590	6	0.1215	6.6	0.01920	2.6	122.6	±3.2
	5.1	0.94	672	630	0.97	0.04480	9.8	0.1190	11	0.01926	3.8	123.0	±4.7
	61	2.58	505	544	1 11	0.03850	15	0 1060	16	0.01990	6	1273	+7.6
	71	0.97	703	1089	1.60	0.04880	73	0.1360	77	0.02016	25	128.7	+3.2
	7.1	0.57	1060	1120	1.00	0.04640	1.5	0.1300	5.2	0.02010	2.5	120.7	±3.2 ±3.1
	0.1	0.00	1000	1130 527	1.11	0.04040	4.0	0.123/	J.2 12	0.02020	2. 4 2.6	123.3	1.C⊥ ⊥2.2
	9.1	2.10	484	527	1.13	0.04040	13	0.1100	13	0.01974	2.0	120.0	±3.2
	10.1	0.54	632	535	0.87	0.04380	5.3	0.1192	5.9	0.01974	2.5	126.0	±3.1
	11.1	1.72	360	395	1.13	0.04020	14	0.1110	15	0.02001	2.7	127.7	±3.5
	12.1	1.09	339	343	1.04	0.06440	5.3	0.1625	6	0.01831	2.7	117.0	±3.1
	13.1	2.20	188	197	1.08	0.06440	12	0.1730	12	0.01944	2.9	124.1	±3.5
	14.1	5.81	343	364	1.10	0.02100	49	0.0540	49	0.01814	3.1	115.9	±3.5
	15.1	0.00	177	167	0.98	0.06080	6.1	0.1630	6.7	0.01940	2.8	123.9	±3.5
	16.1	0.46	934	780	0.86	0.04870	4.3	0.1459	4.9	0.02172	2.4	138.5	±3.3
	GLS-53 (98	5~42′48″E, 2	27°12'11"N)	1005		0.0447-7				0.010.05			a -
	1.1	1.12	2185	1200	0.57	0.04490	5.6	0.0782	6.8	0.01263	3.7	80.9	±3.0
	2.1	1.29	821	413	0.52	0.05230	3.8	0.0856	7.8	0.01187	6.8	76.1	±5.1
	3.1	3.00	555	378	0.70	0.04560	18	0.0680	19	0.01077	5.8	69.1	±4.0

Download English Version:

https://daneshyari.com/en/article/4731387

Download Persian Version:

https://daneshyari.com/article/4731387

Daneshyari.com