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a b s t r a c t

The popular angular defect schemes for Gaussian curvature only converge at the regular
vertex with valence 6. In this paper, we present a new discrete scheme for Gaussian
curvature, which converges at the regular vertex with valence greater than 4. We show
that it is impossible to build a discrete scheme for Gaussian curvature which converges
at the regular vertex with valence 4 by a counterexample. We also study the convergence
property of other discrete schemes for Gaussian curvature and compare their asymptotic
errors by numerical experiments.
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1. Introduction

Estimation of intrinsic geometric invariants is important in a number of applications such as in computer vision, computer
graphics, geometric modelling and computer aided design. It is well known that Gaussian curvature is one of the most
essential geometric invariants for surfaces. However, in the classical differential geometry, this invariant is well defined
only for C2 smooth surfaces. In the field of modern-computer-related geometry, one often uses C0 continuous discrete
triangular meshes to represent smooth surfaces approximately. Hence, estimation of accurately Gaussian curvature for
triangular meshes is demanded strongly.
In the past years, a wealth of different methods for estimating Gaussian curvature have been proposed in the vast

literature of applied geometry. These methods can be divided into two classes. The first class is for computing Gaussian
curvature based on the local fitting or interpolation technique [1–5], while the second class is for giving discretization
formulas which represent the information about the Gaussian curvature [6–9]. In this paper, our focus is on the methods
in the second class and our main aim is to present a new discretization scheme for Gaussian curvature which has better
convergence property than the previous discretization schemes.
LetM be a triangulation of the smooth surface S in R3. For a vertex p ofM, suppose that {pi}ni=1 is the set of the one-ring

neighbor vertexes of p. The set {pippi+1}(i = 1, . . . , n) of n Euclidean triangles forms a piecewise linear approximation of S
around p. Throughout the paper, we use the following conventions pn+1 = p1 and p0 = pn. Let γi denote the angle 6 pippi+1
and let the angular defect at p be 2π −

∑
i γi.

A popular discretization scheme for computingGaussian curvature is in the formof (2π−
∑
i γi)/E, where E is a geometric

quantity. In general, one takes E as A(p)/3 and obtains the following approximation

G(1) :=
3(2π −

∑
i
γi)

A(p)
, (1)
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where A(p) is the sum of the areas of triangles pippi+1. In [6], another scheme

G(2) :=
2π −

∑
i
γi

Sp
(2)

is given, where

Sp :=
∑
i

1
4 sin γi

[
ηiηi+1 −

cos γi
2

(η2i + η
2
i+1)

]
is called the module of the mesh at p. In [10,11], the discretization approximation G(1) is modified as

G(3) :=
2π −

∑
i
γi

1
2

∑
i
area(pippi+1)− 1

8

∑
i
cot(γi)d2i

, (3)

where di is the length of edge pipi+1. There are different viewpoints for explaining the reasonwhy the angular defect closely
relates to the Gaussian curvature, including the viewpoints of the Gaussian–Bonnet theorem, Gaussian map and Legendre’s
formula (see the next section in details).
Asymptotic analysis for the discretization schemes have been given in [4,6,9]. In [4], the authors show that the

discretization scheme G(1) is not always convergent to the true Gaussian curvature for the non-uniform data. In [6], the
authors prove that the angular defect is asymptotically equivalent to a homogeneous polynomial of degree two in the
principal curvatures and show that the scheme G(2) converges to the exact Gaussian curvature in a linear rate provided
p is a regular vertex with valence six. Moreover, in [6], the authors show that 4 is the only value of the valence such
that the angular defect depends upon the principal directions. In [9], Xu proves that the discretization scheme G(1) has a
quadratic convergence rate if the mesh satisfies the so-called parallelogram criterion, which requires valence 6. Therefore,
one hopes to construct a discretization scheme which converges over any discrete mesh. But in [12], Xu et al. show that
it is impossible to construct a discrete scheme which is convergent over any discrete mesh. Hence, we have to be content
with the discretization schemes which converge under some conditions. According to past experiences [6,12,13], we regard
a discretization scheme as desirable if it has the following properties:

(1) It converges at regular vertexes, at least for sufficiently large valence (the definition of the regular vertex will be given
in Section 2);

(2) It converges at umbilical points, i.e., the points satisfying km = kM where km and kM are two principal curvatures.

As stated before, the previous discretization schemes, including G(1),G(2) and G(3), only converge at the regular vertex
with valence 6. In [6], a method for computing the Gaussian curvature at the regular vertex with valence unequal to 4
is described. But the method requires two meshes with valences n1 and n2 (n1 6= 4, n2 6= 4, n1 6= n2). In this paper,
we will construct a discretization scheme which converges at the regular vertex with valence not less than 5, and also at
umbilical points with any valence. Moreover, the discretization scheme requires only a single mesh. Hence, the new scheme
is more desirable. Furthermore, we show that it is impossible to construct a discretization scheme which is convergent at
the regular vertex with valence 4. Therefore, the convergence problem remains open for the regular vertexes with valence
3. Here, it should be noted that the pointwise convergence discussed in this paper is different from the convergence in norm
as discussed in [14,15].
The rest of the paper is organized as follows. Section 2 describes some notations and definitions and Section 3 shows

three viewpoints for expressing the relation between the angular defect and Gaussian curvature. In Section 4, we study the
convergence property of a modified discretization Gaussian curvature scheme.We present in Section 5 a new discretization
scheme and prove that the scheme has a good convergence property, which is the central result of the paper. In Section 6,
for the regular vertex with valence 4, we show that it is impossible to build a discretization scheme which is convergent to
the real Gaussian curvature. Some numerical results are given in Section 7.

2. Preliminaries

In this section, we introduce some notations and definitions used throughout the paper (see also Fig. 1). Let S be a given
smooth surface and p be a point over S. Suppose that the set {pippi+1}, i = 1, . . . , n, of n Euclidean triangles forms a
piecewise linear approximation of S around p. The vector from p to pi is denoted as −→ppi. The normal vector and tangent
plane of S at the point p are denoted by n andΠ, respectively. We denote the projection of pi ontoΠ as qi, and define the
plane containing n, p and pi asΠi. Then we let κi denote the curvature of the plane curve S ∩Πi at p. The distances from p
to pi and qi are denoted as ηi and li, respectively. Let γi and βi denote 6 pippi+1 and 6 qipqi+1. The two principal curvatures
at p are denoted as km and kM . Let η = maxi ηi. The following results are presented in [6,9,13]:

li
ηi
= 1+ O(η), βi = γi + O(η2), (4)
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