Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Majorization problem for certain class of *p*-valently analytic function defined by generalized fractional differintegral operator

J.K. Prajapat^{a,*}, M.K. Aouf^b

^a Department of Mathematics, Central University of Rajasthan, Kishangarh, Distt.-Ajmer, Rajasthan, India ^b Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

ARTICLE INFO

Article history: Received 13 June 2011 Received in revised form 24 October 2011 Accepted 24 October 2011

Keywords: Analytic function Differential subordination Majorization Fractional differintegral operator

1. Introduction

Lat functions f and g are analytic in the area unit dials	
Let functions f and g are analytic in the open unit disk	
$\mathbb{U} = \{ z : z \in \mathbb{C}, z < 1 \}.$	(1.1)
We say that f is majorized by g in $\mathbb U$ and write	
$f(z) \ll g(z) (z \in \mathbb{U}),$	(1.2)
f there exist a function $\varphi(z)$, analytic in $\mathbb U$ such that	

 $|\varphi(z)| \le 1$ and $f(z) = \varphi(z)g(z)$ $(z \in \mathbb{U})$.

Note that majorization is closely related to quasi-subordination [1].

Further, we say that the function f is subordinated to g, and write $f(z) \prec g(z), z \in U$, if there exists a function w analytic in U, with

 $|w(z)| < 1 \text{ and } w(0) = 0 \quad (z \in \mathbb{U}),$ (1.4)

such that

 $f(z) = g(w(z)) \quad (z \in \mathbb{U}).$ (1.5)

In particular, if f(z) is univalent in \mathbb{U} , we have the following equivalence:

 $f(z) \prec g(z) \quad (z \in \mathbb{U}) \Longleftrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$

We recall here the following generalized fractional integral and generalized fractional derivative operators due to Srivastava et al. [2] (see also [3]).

* Corresponding author. E-mail addresses: jkp_0007@rediffmail.com (J.K. Prajapat), mkaouf127@yahoo.com (M.K. Aouf).

ABSTRACT

In this paper we investigate a majorization problem for a subclass of *p*-valently analytic function involving a generalized fractional differintegral operator. Some useful consequences of the main result are mentioned and relevance with some of the earlier results are also pointed out.

© 2011 Elsevier Ltd. All rights reserved.

(1.3)

^{0898-1221/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.10.065

Definition 1. For real numbers $\lambda > 0$, μ and η , Saigo hypergeometrc fractional integral operator $I_{0,z}^{\lambda,\mu,\eta}$ is defined by

$$I_{0,z}^{\lambda,\mu,\eta}f(z) = \frac{z^{-\lambda-\mu}}{\Gamma(\lambda)} \int_0^z (z-t)^{\lambda-1} {}_2F_1\left(\lambda+\mu,-\eta;\lambda;1-\frac{t}{z}\right) f(t) dt,$$
(1.6)

where the function f(z) is analytic in a simply-connected region of the complex z-plane containing the origin, with the order

 $f(z) = O(|z|^{\varepsilon}) \quad (z \to 0; \varepsilon > \max\{0, \mu - \eta\} - 1),$

and the multiplicity of $(z - t)^{\lambda - 1}$ is removed by requiring $\log(z - t)$ to be real when (z - t) > 0.

Definition 2. Under the hypotheses of Definition 1, Saigo hypergeometric fractional derivative operator $J_{0,z}^{\lambda,\mu,\eta}$ is defined by

$$J_{0,z}^{\lambda,\mu,\eta}f(z) = \begin{cases} \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \left\{ z^{\lambda-\mu} \int_0^z (z-t)^{-\lambda} {}_2F_1\left(\mu-\lambda, 1-\eta; 1-\lambda; 1-\frac{t}{z}\right) f(t) dt \right\} & (0 \le \lambda < 1); \\ \frac{d^n}{dz^n} J_{0,z}^{\lambda-n,\mu,\eta}f(z) & (n \le \lambda < n+1; n \in \mathbb{N}), \end{cases}$$
(1.7)

where the multiplicity of $(z - t)^{-\lambda}$ is removed as in Definition 1.

It may be remarked that

$$I_{0,z}^{\lambda,-\lambda,\eta}f(z) = D_z^{-\lambda}f(z) \quad (\lambda > 0)$$

and

$$J_{0,z}^{\lambda,\lambda,\eta}f(z) = D_z^{\lambda}f(z) \quad (0 \le \lambda < 1),$$

where $D_z^{-\lambda}$ denotes fractional integral operator and D_z^{λ} denotes fractional derivative operator considered by Owa [4]. Let A_p denote the class of functions of the form

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (p \in \mathbb{N} = \{1, 2, 3, \ldots\}),$$
(1.8)

which are analytic and *p*-valent in the open unit disk \mathbb{U} . Recently Goyal and Prajapat [5], introduced generalized fractional differintegral operator $\mathscr{S}_{0,z}^{\lambda,\mu,\eta}$: $\mathscr{A}_p \to \mathscr{A}_p$, by

$$\mathscr{S}_{0,z}^{\lambda,\mu,\eta}f(z) = \begin{cases} \frac{\Gamma(1+p-\mu)\Gamma(1+p+\eta-\lambda)}{\Gamma(1+p)\Gamma(1+p+\eta-\mu)} z^{\mu} \int_{0,z}^{\lambda,\mu,\eta} f(z) & (0 \le \lambda < \eta+p+1, z \in \mathbb{U});\\ \frac{\Gamma(1+p-\mu)\Gamma(1+p+\eta-\lambda)}{\Gamma(1+p)\Gamma(1+p+\eta-\mu)} z^{\mu} I_{0,z}^{-\lambda,\mu,\eta} f(z) & (-\infty < \lambda < 0, z \in \mathbb{U}). \end{cases}$$
(1.9)

It is easily seen from (1.9) that for a function f of the form (1.8), we have

$$\begin{split} \delta_{0,z}^{\lambda,\mu,\eta} f(z) &= z^p + \sum_{n=1}^{\infty} \frac{(1+p)_n (1+p+\eta-\mu)_n}{(1+p-\mu)_n (1+p+\eta-\lambda)_n} a_{p+n} z^{p+n} \\ &= z^p {}_3F_2(1,1+p,1+p+\eta-\mu;1+p-\mu,1+p+\eta-\lambda;z) * f(z) \\ &\quad (z \in \mathbb{U}; \ p \in \mathbb{N}; \ \mu,\eta \in \mathbb{R}; \ \mu < p+1; -\infty < \lambda < \eta + p + 1) \end{split}$$
(1.10)

where * denotes usual Hadamard product of analytic functions and $_{p}F_{q}$ is well known generalized hypergeometric function.

The operator $\delta_{0,z}^{\lambda,\mu,\eta}$ satisfies the following three-term recurrence relation:

$$z(\delta_{0,z}^{\lambda,\mu,\eta}f(z))^{(j+1)} = (p+\eta-\lambda)(\delta_{0,z}^{\lambda+1,\mu,\eta}f(z))^{(j)} - (\eta+j-\lambda)(\delta_{0,z}^{\lambda,\mu,\eta}f(z))^{(j)}.$$
(1.11)

Note that

$$\delta_{0,z}^{0,0,0}f(z) = f(z), \qquad \delta_{0,z}^{1,1,1}f(z) = \delta_{0,z}^{1,0,0}f(z) = \frac{zf'(z)}{p}$$

and

$$\$_{0,z}^{2,1,1}f(z) = \frac{zf'(z) + z^2f''(z)}{p^2}.$$

We also note that

$$\mathscr{S}^{\lambda,\lambda,\eta}_{0,z}f(z) = \mathscr{S}^{\lambda,\mu,0}_{0,z}f(z) = \mathscr{\Omega}^{\lambda,p}_{z}f(z)$$

Download English Version:

https://daneshyari.com/en/article/473150

Download Persian Version:

https://daneshyari.com/article/473150

Daneshyari.com