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1. Introduction

Let functions f and g are analytic in the open unit disk

U={z:z€C, |z| < 1}. (1.1)
We say that f is majorized by g in U and write

f@ Kgl) (e, (1.2)
if there exist a function ¢(z), analytic in U such that

lp()| =1 and f(z) = ¢(2)g(z) (z €. (1.3)

Note that majorization is closely related to quasi-subordination [1].
Further, we say that the function f is subordinated to g, and write f (z) < g(z), z € U, if there exists a function w analytic
in U, with

lwi@)| <1 and w(0) =0 (zeU), (1.4)
such that
f@)=gw(@) (zel). (1.5)

In particular, if f (z) is univalent in U, we have the following equivalence:
f@) <g@) (z2€U) <+ f(0)=¢g0) and f(U) Cg).

We recall here the following generalized fractional integral and generalized fractional derivative operators due to
Srivastava et al. [2] (see also [3]).
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Definition 1. For real numbers A > 0, i and 5, Saigo hypergeometrc fractional integral operator Ié”z" " is defined by
I e a1
en —t A+, ,Al—f t) dt, 1.6
f@) = F(A)/( ) <—|—M -1 f@® (1.6)

where the function f (z) is analytic in a simply-connected region of the complex z-plane containing the origin, with the order
f@ =0(zl") (z— 0;e>max{0, u —n} —1),

and the multiplicity of (z — t)*~! is removed by requiring log(z — t) to be real when (z — t) > 0.

Definition 2. Under the hypotheses of Definition 1, Saigo hypergeometric fractional derivative operator ](’},‘Z“ ""is defined by

#i A—,u/z ok . 4. _E .
F(l—A)dz{z 0(z t) 2F1<u Ml—n1—as1 Z)f(t)dt} (0<i<1);

@ =1 (7
]OZ”‘“’f(z) m<i<n+1neN),
where the multiplicity of (z — t)~* is removed as in Definition 1.
It may be remarked that
A —X, —
"f(z) =D;*f(z) (> 0)
and
AAm A
Jo. f@=D;f(z) (O=A<1),
where D;* denotes fractional integral operator and D? denotes fractional derivative operator considered by Owa [4].
Let 4, denote the class of functions of the form
o0
f@=2"+) a2 (peN={1.2.3...)), (1.8)

n=1
which are analytic and p -valent in the open unit disk U. Recently Goyal and Prajapat [5], introduced generalized fractional
differintegral operator 5 T Ay — Ap, by

rA4+p—wrd+p+n—»x

() (0O<A<n+p+1,zel);

/\ltn ra+prQ+p+n—up)
z 1.9
TO=\rasp-wra+ptn-»_ n (19)

f(z) (—o0o<XA<0,zeU).
ra+pra+p+n—p
It is easily seen from (1.9) that for a function f of the form (1.8), we have
1 1 -
Aunf(z) _ZP"FZ ( +p) ( +p+7 M)n ap+nzp+n
A+p—mwn(+p+n—"21hn
=zp3F2(1,1+p,1+p+n—u,1+p—u,1+p+n—k;2)*f(2)

(zeUpeN; u,neR p<p+l—c0o<i<n+p+1) (1.10)

where * denotes usual Hadamard product of analytic functions and ,F; is well known generalized hypergeometric function.
The operator /33”2" " satisfies the following three-term recurrence relation:

2851 F @)Y = (0 + 0 — V(S L @)D = (5 — (85" (2)9. (1.11)
Note that
ooof(z) =), “lf( )_/gmof( )_Zf’(z)

p

and
Zf'(2) + 2*f"(2)
53 21 ! f2) = T
We also note that

857" (2) = 851 (2) = 21Pf (@),
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