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Crustal thickness can be determined by gravimetric methods based on different assumptions, e.g. by iso-
static hypotheses. Here we compare three gravimetric inversion methods to estimate the Moho depth.
Two Moho models based on the Vening Meinesz-Moritz hypothesis and one by using Parker-Oldenburg’s
algorithm, which are investigated in Tibet plateau. The results are compared with CRUST2.0, and it will be
presented that the estimated Moho depths from the Vening Meinesz-Moritz model will be better than
the Parker-Oldenburg’s algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The MohoroviCi¢ discontinuity, usually called the Moho, is the
boundary between the Earth’s crust and mantle. Different methods
can be mentioned to estimate the Moho depth: seismic method such
as CRUST2.0 (Bassin et al., 2000) and gravimetric—isostatic methods.
According to the isostatic hypothesis a mountain is compensated by
a mass deficiency beneath it, where the crust is floating on the vis-
cous mantle. In addition different gravimetric-isostatic hypotheses
exist for estimating the crustal thickness/Moho and density of the
Earth’s crust, and it is not clarified which one is the most suitable
to use in geophysical and geodynamical applications. There are
two classical isostatic models for topographic mass compensation:
(a) Pratt’s (1855) and (b) Airy’s (1855). According to Pratt, the mass
of each topographic column of the same cross-section is equal above
the level of compensation depth. According to Airy, mountains are
floating on the mantle with higher density, and mountains have
roots that construct the compensation. Both hypotheses are highly
idealized when they assume the topographic mass compensation
to be strictly local. Vening Meinesz (1931) modified Airy’s hypothe-
sis by introducing regional instead of local compensation. Parker’s
(1972) model was based on the relation between the vertical gravity
effect and its causative topographic mass in the Fourier domain. The
Parker model was constructed based on variable Moho depth and
the constant density contrast. This model is close to that of Vening
Meinesz from the concept point of view. Oldenburg (1974) deduced

E-mail address: mohbag@kth.se

1367-9120/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jseaes.2011.08.013

a method to compute the density contrast of crust and mantle from
the gravity anomaly in a Cartesian coordinate system from Parker’s
method. Also he defined a method to stabilize the inversion in
Parker’s method. Several authors presented a variety of methods
to compute the geometry of a density interface related to known
gravity anomalies, see e.g. Cordell and Henderson (1968) and
Dyrelius and Vogel (1972) that used the technique presented by Par-
ker (1972). The Parker-Oldenburg (PO) method used by Gémez Oritz
and Agarwal (2005) and Shin et al. (2006) to estimate the Moho
depth in Brittany (France) and Ulleung Basin (South of Korea),
respectively, based on Fast Fourier Transform (FFT) technique. Shin
et al. (2007) studied the Moho undulations beneath Tibet from the
GRACE (Gravity Recovery and Climate Experiment, Tapley et al.,
2005) gravity data based on PO’s method. Antarctica crustal thick-
ness investigated by Block et al. (2009) from satellite gravity data
by using PO’s method, too. They used global gravity field from GRACE
to estimate the Moho depth through gravity inversion.

Until now we have tried to review the prior studies on the Moho
depth estimation. Now a different gravimetric-isostatic model is
presented. Moritz (1990, Section 8) presented the inverse isostatic
problem based on the Vening Meinesz hypothesis in a global spher-
ical approximation, and we hereafter call this method the Vening
Meinesz-Moritz (VMM) problem/method. Recently Sjoberg (2009)
formulated this problem by solving a non-linear Fredholm equation
of the first kind, and he has presented some approximate and prac-
tical methods to estimate the crustal thickness by the gravimetric
data.

The main applications of the Moho models can be mentioned
such as forward dynamic modelling, numerical heat flow
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calculations and seismologic applications. The crustal thickness
can be used for downward continuation of the satellite data such
as Gravity field and steady-state Ocean Circulation Explorer
(GOCE) to recover the gravity anomaly. In this method the topo-
graphic-isostatic potential can be determined by the Moho depth
model then their effect will removed from the satellite data for
smoothing the satellite data (Eshagh and Bagherbandi, 2011). This
is one of the geodetic example for the Moho depth. Also the Moho
depth model can be applied for determination of the Moho density
contrast (Sjoberg and Bagherbandi, 2011). The crustal thickness
estimated by the VMM model can be applied to construct a syn-
thetic Earth gravity model (SEGM), by the topographic-isostatic
coefficients (Pavlis and Rapp, 1990; Haagmans, 2000). The main
motivation to use the topographic-isostatic harmonic coefficients
is to create the SEGM, is the similarity of power spectra of the topo-
graphic-isostatic and Earth gravitational models such as EGM08
(Pavlis et al., 2004, 2008) and also large correlation between them
in medium/high-wavelength. The SEGM describes the potential
field of the synthetic Earth. It must be realistic and consistent with
the Earth’s topography. To achieve this, an existing global geopo-
tential model is used to describe the low degrees, whereas the
medium and high degrees are obtained from a global topo-
graphic-isostatically induced potential (Haagmans, 2000). How-
ever, the method is rather simple, easily applicable and it can
provide a good starting point for the validation of various gravity
field recovery techniques.

In this study three inversion methods are investigated to esti-
mate the Moho depth. All these models use the same assumption
to estimate the Moho depth. On the other hand, these models have
the same mathematical nature for recovery of Moho from gravity
anomalies. We will compare difference gravimetric models in com-
parison with CRSUT2.0. Advantage and disadvantage of the Moho
Models will be discussed. In addition, we know that the inversion
methods are an improperly posed problem, and sensitive to all
kinds of errors such as discretization error of the integral equation.
In this paper we will discuss about stabilization of each inversion
methods for estimating the Moho depth.

2. The Vening Meinesz-Moritz isostatic hypothesis

The Vening Meinesz-Moritz problem (Vening Meinesz, 1931;
Moritz, 1990) is to determine the Moho depth T(P) such that the
compensating attraction A(P) totally compensates the Bouguer
gravity anomaly Agg(P) on the Earth’s surface, implying that the
isostatic anomaly Ag(P) vanishes for point P on the Earth’s surface
(Sjoberg, 2009):

Ag;(P) = Agy(P) + Ac(P) = 0. (1)

Eq. (1) is the fundamental equation for determining the Moho depth
isostatically. It should be stated that the compensation attraction is
a function of the Moho depth as well as the position of point P. In
order to obtain the mathematical expression of A{P), consider the
compensation potential at an arbitrary point P based on the Newton
integral:
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where Ap is the density contrast between crust and mantle, G is the
Newtonian gravitational constant, R is the radius of a sphere equal
to semi-major axis of the reference ellipsoid, T the variable Moho
depth, Ty is the normal Moho depth or the global mean depth of
Moho; see Sjoberg (2009) for its mathematical expression. o is
the unit sphere and Lpy = /13 + 13 — 2rorp cosy, where rp and rq
are the geocentric distances to the computation point P and integra-

tion point Q, respectively, and  is the geocentric angle between
these two points. Eq. (2) can also be written by:

Vc(P) = Ve, (P) +dVc(P), (3a)
where
R=To 2 dr
Ve,(P) = GAp / / / e s (3b)
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is the potential contribution from the mean Moho depth and
Ror2dr
dVe(P) = GAp// / Rl (3¢)
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is the contribution from the variable Moho depth T. The compensa-
tion attraction at point P can thus be obtained by taking radial
derivative of Eq. (3a) and inserting it into Eq. (1) can be written:

Agg(P) + Ac,(P) + dAc(P) = 0. (4a)

where Ac(P) and dA{P) are the compensation attractions of the
mean and variable Moho, respectively. Here the Moho depth T is
implicitly hidden in the integral of dA{P). Rearrangement of Eq.
(4a) yields:

dAc(P) = —[Agy(P) + A, (P, (4b)

and by expanding the first term of Eq. (3b) in a series of Legendre’s
polynomials, and performing the integration with respect to the ra-
dius r and using the binomial expansion, one can obtain the normal
compensation attraction Ac, (P) as (Sjoberg, 2009):

~ 41kR
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By substituting the first radial derivative of Eq. (3¢) into Eq. (4b)
the Moho depth can be recovered by solving the following integral
Fredholm equation of first kind (Sjéberg, 2009):
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f(P) = —[Agp(P) + A, (P)]/(GAp), (5b)
K(ro,,5) = 20:; % (g) M(1 — §™3)Py(cos ), (50)
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where Py(cos V) is the Legendre polynomial of degree n. In fact the

residual compensation attraction dA{P) is equal to the left side of

Eq. (5a). Eq. (5a) is the main equation of inverse problem in isostasy.
Eq. (5¢) can be written by the following closed form formula

(see Appendix A for a proof):
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where a; =X, a, = f—; and t = cos .
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