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a b s t r a c t

In this paper, we show the combined use of analytical and numerical techniques in the
study of bifurcations of equilibria of low-dimensional chaotic problems. We study in detail
different aspects of the paradigmatic Rössler model. We provide analytical formulas for
the stability of the equilibria as well as some of their codimension one, two, and three
bifurcations. In particular,we carry out a complete study of theAndronov–Hopf bifurcation,
establishing explicit formulas for its location and studying its character numerically,
determining a curve of generalized-Hopf bifurcation, where the Hopf bifurcation changes
from subcritical to supercritical. We also briefly study some routes among the different
Andronov–Hopf bifurcation curves and how these routes are influenced by the local
and global bifurcations of limit cycles. Finally, we show the U-shape of the homoclinic
bifurcation curve at the studied parameter values.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Rössler model [1] is a paradigmatic problem among low-dimensional dynamical systems with chaotic behavior. So,
a large number of articles [2–11] are still being published giving new partial results. However, this problem is not yet fully
understood. The importance of this system, together with the Lorenzmodel, is that, being paradigmatic problems, they have
become test problems for almost all new analytical and numerical techniques in computational dynamics.

The Rössler equations [1] are given by

ẋ = −(y + z),
ẏ = x + ay,
ż = b + z(x − c),

(1)

with a, b, c ∈ R, and they are assumed to be positive and dimensionless.
The main goal of the present paper is to show how the use of numerical and analytical techniques can provide complete

qualitative studies for low-dimensional chaotic problems, in particular in the study of bifurcations of equilibria. We focus
our attention on the Rössler system in order to provide complete explicit expressions for the location and stability of the
different equilibria, as well as for the Andronov–Hopf bifurcations. For the complete study of this bifurcation we need
some numerical explorations due to the high complexity in the analysis of the codimension two bifurcations when the
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first Lyapunov coefficient vanishes. Also, we show how the global homoclinic bifurcations give rise to different routes in the
connection via limit cycles between the different bifurcation curves in the space of parameters.

The paper is organized as follows. In Section 2, we provide analytical formulas for the stability of the equilibria. In
Section 3, we present some codimension one, two, and three bifurcations of equilibria [12], in particular, a complete study
of the Andronov–Hopf bifurcation is performed. In Section 4, we study different routes among the Hopf bifurcation curves
and we show the connection among the bifurcation curves of equilibria, limit cycles, and the chaotic and regular regions,
and we show the U-shape of the homoclinic bifurcation curve. Finally, in Section 5, we present some conclusions.

2. Equilibria: location and stability

Some of the first data to obtain in the analysis of a dynamical system are the equilibriumpoints and their bifurcations. The
Rössler equations have two equilibrium points [7] for c2 > 4ab, given by P1 = (−ap1, p1, −p1) and P2 = (−ap2, p2, −p2),
with

p1 :=
1
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c2 − 4ab

a


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If c2 = 4ab, then P1 = P2.
The stability of the equilibrium points can be studied analytically by means of the classical Routh–Hurwitz criterion, but

in the literature there are only partial answers without explicit equations for the stable regions.

Proposition 1. The equilibrium point P1 in the Rössler system is always unstable and P2 is linearly stable iff the parameters a, c
belong to S1 = {(a, c)|a ≤ 1 and c > 2a} or to S2 = {(a, c)|a ∈ (1,

√
2) and c ∈ (2a, 2a/(a2 − 1))}, and the parameter b

satisfies

bH(a, c) ≤ b < bE(a, c), (2)

with

bE(a, c) :=
c2

4a
,

bH(a, c) :=
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(3)

Proof. The proof is obtained by using the Routh–Hurwitz criterion (RHC). The RHC applied to a polynomial of degree 3,
x3 + Ax2 + Bx+ C , requires that C > 0, A > 0, and AB > C . Taking the linearized equations around both equilibrium points
permits us to obtain their characteristic polynomials. For P1 and P2, respectively,

q1(x) = x3 +
c − 2a − K

2
x2 +

2a + c − a2c + (1 + a2)K
2a

x − K ,

q2(x) = x3 +
c − 2a + K

2
x2 +

2a + c − a2c − (1 + a2)K
2a

x + K ,

with K =
√
c2 − 4ab. The point P1 already fails the condition C > 0 for any value of the parameters.

For P2, wehaveC > 0when the equilibriumpoints exist. ForA > 0, is necessary that c ≥ 2aor (c ∈ (a, 2a) and b < c−a).
The crucial point is the last condition: AB > C . After some algebra, we obtain the necessary and sufficient condition
−2a + 2b + 2a2b + a2c − ac2 − a(c − a)K > 0. For it to hold, first it is necessary that −2a + 2b + 2a2b + a2c − ac2 > 0.
Or, equivalently,

b > b1(a, c) :=
a(2 + c(c − a))

2(1 + a2)
.

Also, it is required that

4(1 + a2)2b2 − 4a(2 + 2a2 − a4 − ac + a3c + c2)b + 4a2(1 + c(c − a)) > 0. (4)

If c < −a3+2
√
a2 + a4, then condition (4) is satisfied for all b. If c = −a3+2

√
a2 + a4, then there is a number bH(a, c) such

that condition (4) is true for all b ≠ bH(a, c). Finally, if c > −a3+2
√
a2 + a4, then there are twonumbers bh(a, c) < bH(a, c),

and inequality (4) is satisfied for b < bh(a, c) or b > bH(a, c). But, as bh(a, c) < b1(a, c), the only valid situation is
b > bH(a, c).

If c ∈ (a, 2a), then b1(a, c) < c − a implies that c > a + 2/a > −a3 + 2
√
a2 + a4. So, bH(a, c) exists, and it is greater

than c − a. Therefore, it is necessary that c ≥ 2a(> −a3 + 2
√
a2 + a4 for positive a).
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