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a b s t r a c t

A new technique for estimating the finite strain of deformed elliptical markers is presented. This method
is based on the property of the arithmetic mean Rf of the deformed object aspect ratios Rf to reach its
minimum value in the undeformed state when they correspond to the initial aspect ratios Ri. The
minimized Ri (MIRi) iterative method furnishes the best results when, in the pre-strain state, the markers
are uniformly orientated for every aspect ratio (Ri) class. A Matlab code, provided in this study, finds the
best values of strain Rs and maximum stretching direction X that minimize the arithmetic mean Ri by
means of several iterations. In order to define the uncertainties of Rs and X, the code: (i) re-samples h-
times the original (Ri, q) dataset; (ii) assigns random values to the initial long axis angles q; (iii) deforms
newly the synthetic dataset; (iv) re-applies the MIRi method; and finally (v) estimates the standard
deviation for the (Rs, X) values. Tests of the method on synthetic aggregates of elliptical markers and two
naturally deformed rocks provide strain values that are compared with estimations from other available
methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The evaluation of finite strain in rocks is central to under-
standing many aspects of natural rock deformation including strain
magnitude, symmetry, orientation and distribution at all scales (e.g.
Talbot and Sokoutis, 1995; Yonkee, 2005; Alsleben et al., 2008;
Vitale and Mazzoli, 2008, 2009; Sarkarinejad et al., 2010;
Dasgupta et al., 2012; Zhang et al., 2013). Several studies have
devised powerful tools for determining finite strain by means of
algebraic and geometrical approaches (e.g. Ramsay, 1967; Dunnet,
1969; Elliott, 1970; Dunnet and Siddans, 1971; Matthews et al.,
1974; Shimamoto and Ikeda, 1976; Lisle, 1977a,b; 1985; Fry, 1979;
Erslev, 1988; Mulchrone et al., 2003; Yamaji, 2005, 2008; Vitale
and Mazzoli, 2010; Shan and Liang, 2014).

Many rocks, to a first order, can be considered as aggregates of
different grains with different sizes and shapes that are differen-
tiated as “matrix and inclusions”. The matrix comprises grains with
a smaller size within which occur “inclusions” defined by the
coarser grains. The matrix and inclusions can show different
rheological behaviors, a reflection of different viscosities, wherein
each exhibits different finite strain relative to an imposed bulk
strain. In turn, the effective matrix-inclusion viscosity contrast

depends also on the relative concentrations of matrix and in-
clusions (Gay, 1968; Treagus and Treagus, 2001; Vitale and Mazzoli,
2005) with viscosity contrast approaching unity for low matrix
concentrations (such as grain-supported rocks). When this
circumstance is verified, or when matrix and inclusions have the
same viscosity (i.e. there is no viscosity contrast), the bulk strain Rs
corresponds to that calculated from the inclusions. Several
methods exist, allowing one to estimate finite bulk strain (Rs) from
deformed markers on a plane (2D strain analysis). These can be
grouped into three main classes: (i) graphical, (ii) iterative, and (iii)
algebraic; that are summarized below. Geometric relationships
between strain elements described in this paper are shown in Fig.1;
all abbreviations are listed, with relevant captions, in Table 1.

Graphical methods, providing approximations of Rs and direc-
tion of the maximum stretching X, include the Rf/f method
(Ramsay, 1967; Dunnet, 1969; Lisle, 1985). This technique works in
the case of homogeneously and passively deformed markers
without an initial preferred orientation. The (Rfj, fj) data, where Rfj

is the aspect ratio and fj the orientation of the long axis of the j-th
deformed object, are compared with sets of pre-strain state aspect
ratio (Ri) curves. The center of these “onion” curves, that fits best
the data distribution, provides the expected strain Rs and direction
X. However the choice of the best-fit curves is arbitrary. Another
popular technique is the Fry method (Fry, 1979). Starting from the
centroid coordinates of every marker, the bulk strain is calculatedE-mail address: stefano.vitale@unina.it.
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regardless the initial marker shape, with the assumptions that the
undeformed objects are uniformly oriented and have about the
same area. The latter constraint is overcome in the normalized Fry
method (Erslev, 1988) where every marker area is normalized.

Iterative methods include the q-curve technique (Lisle, 1977b;
Peach and Lisle, 1979), which consists of finding the best uniform
distribution of (Rf,f) datawith respect the q-curves calculated using
the c2 test, where the qj is the angle that the long axis of every
marker forms with the X-direction in the pre-strain state. The
method assumes that the distribution of the undeformed marker
orientation was uniform. However this method does not directly
estimate the direction of the finite strain ellipse X-axis, corre-
sponding to the symmetry line of the (Rf,f) data that has to be
previously established. Borradaile (1976) proposed a method in
which the elliptical marker directions are undeformed several
times with different values of incremental strain and compared
with a random array of directions with the help of the c2 test. In
commonwith many other methods is the assumption that the pre-
deformation orientation distribution was uniform.

Of the methods based on algebraic analyses, some calculate
only the bulk strain Rs. These include estimation using the

arithmetic mean of the aspect ratios (Hossack, 1968) that sup-
poses an initial spherical shape of the strain markers and deter-
mination of the harmonic mean RfH (Lisle, 1977a) that requires a
uniform distribution of orientations for each shape fraction.
Matthews et al. (1974) provide a statistic approach for deter-
mining Rs, but the maximum stretching direction X has to be
assumed. Another algebraic method able to determine both Rs and
X is that proposed by Shimamoto and Ikeda (1976). Here, the basic
assumptions are that the markers, in the undeformed state, are (i)
passively deformed; (ii) characterized by elliptical shapes, and (iii)
randomly orientated. Mulchrone et al. (2003) furnish (Rs, X) es-
timations by an algebraic method and uncertainties using the
bootstrap technique assuming that: (i) the long axis orientation of
ellipsoidal markers is a uniform random variable; (ii) the distri-
bution of axial ratios in pre-strain state is independent of orien-
tation; (iii) markers are passively deformed. Yamaji (2005)
furnishes an inverse method for deformed elliptical objects also in
the case of the occurrence of a pre-strain fabric characterized by a
class of anisotropy. Finally Yamaji (2008, 2013) has proposed an
unified theory of 2D strain analysis consisting in the application of
the hyperbolic vector mean method which results are comparable
with those of the methods of Mulchrone et al. (2003) and
Shimamoto and Ikeda (1976).

In this paper, a further method is presented that is able to
calculate approximations of Rs (bulk strain), direction of maximum
stretching direction X and relative uncertainties. This method is a
corollary of the existing theory of strain analysis and can be used as
an additional estimation to compare with other approximations
resulting from the established methods.

2. The minimized Ri (MIRi) iteration method

In order to obtain best estimations of bulk strain Rs and
maximum stretching direction X within a plane, the MIRi method
assumes that:

1. deformation is homogeneous within a relevant volume
element;

2. pre-strain state inclusions can be approximated to ellipses (e.g.
Mulchrone and Roy Choudhury, 2004);

3. the distribution of long axis orientation is uniform for each
ellipticity class.

Point 3 implies that the axial ratios in the pre-strain state are
independent of orientation. Another condition necessary to es-
timate the bulk strain from deformed inclusions is that the
markers are passively deformed. In the case the viscosity contrast
between inclusions and matrix is different from unity, the
calculated strain Rs does not match with the bulk strain,
providing only an estimation of the inclusion strain (e.g. Treagus
and Treagus, 2001).

According to Lisle (1977a), measurements of the aspect ratios Rfj

of every j-th deformed object do not allow the direct calculation of
the exact value of the object strain Rs from an algorithm, but only
approximations of the real value. For example, by comparing the
arithmetic ðRf Þ and harmonic mean ðRfHÞ of the aspect ratios Rfj for
elliptical markers with the same initial aspect ratio Rij and a uni-
form orientation distribution (Fig. 2), Lisle (1977a) shown as the RfH
furnishes the best approximation of Rs, on the contrary the arith-
metic mean Rf provides theworst estimation (Fig. 2). This is true for
all elliptical inclusions regardless of their initial aspect ratio Rij. The
harmonic mean is a sufficient approximation for low values of the
initial aspect ratio (Rij between 1 and 2; Fig. 2), whereas for high
initial aspect ratios and low values of the strain, the difference
between the harmonic mean and the true strain can be very large;

Fig. 1. Geometric relationships between strain features described in the text.

Table 1
Abbreviations used in the text.

Notation

X Long axis of finite strain ellipse (maximum stretching direction)
Z Short axis of finite strain ellipse
eX Extension along the X direction
eZ Extension along the Z direction
Rs Finite strain
ai Long axis of the undeformed marker
bi Short axis of the undeformed marker
Ri Aspect ratio of the undeformed marker
q Angle between X and the long axis of the undeformed marker
af Long axis of the deformed marker
bf Short axis of the deformed marker
Rf Aspect ratio of deformed marker
a Angle between the horizontal line and the long axis of the

deformed marker
f Angle between X and the long axis of the deformed marker
RfH Harmonic mean of Rf
Ri Arithmetic mean of Ri
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