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a b s t r a c t

A method is proposed for determining the 2D deformation gradient tensor that represents the de-
formations of pre- and post-deformation markers with arbitrary shapes. The deformation is not
necessarily coaxial. The tensor is evaluated in a least-square sense. Therefore, the method can deal with
heterogeneous deformations, and calculate their average tensor. The inverse method has the residuals
that can be directly converted to the logarithmic strain needed to transform the calculated
post-deformation shapes to observed ones. In addition, we propose the measure of heterogeneity for
finite deformations. The method was applied to artificial and natural data from balanced cross sections.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Observation of tectonic deformations allows us to test the nu-
merical or sandbox models that predicts deformation field (e.g.,
McKenzie, 1979; Erslev, 1991; Allmendinger, 1998; Iwamori, 2003;
Poblet and Bulnes, 2007; Henk and Nem�cok, 2008; Graveleau et al.,
2012). Zhang and Hynes (1995) proposed a method to determine
non-coaxial 3D deformation within such a shear zone that did not
have shearing in the direction across the zone.

Here, we propose a theoretical method to determine two-
dimensional, deformation gradient tensor, F, which represents
not only coaxial but also non-coaxial deformations. The tensor can
always be decomposed into left-stretch tensor and orthogonal
tensor, F ¼ VR (Spencer, 2004). Strain ellipse or ellipsoid depicts
only the left-stretch tensor, V. Knowledge of strain ellipse or
ellipsoid is not enough to determine F, because R is remain unde-
termined (Davis and Titus, 2011, p. 1052). Popular strain analysis
methods such as Rf/f techniques are insufficient. Accordingly,
Zhang and Hynes (1995) utilized the orientation of a shear plane
and the direction of shear to solve for F. We compare pre- and
post-deformation shapes of markers to determine F without
assuming directions of tectonic motions.

In this work, the ellipse fitting technique of Teagure (1980) was
used for this purpose: Mulchrone and Choudhury (2004) proved
that the technique is useful for geological strain analysis. Using the
technique, we can deal with the coaxial and non-coaxial de-
formations of markers with arbitrary shapes. It is assumed that the
markers were subject to the same deformation at least approxi-
mately. Strictly, deformation field is heterogeneous, but a coarse
graining approach (e.g., Lesne, 2006) allows rough but quantitative
estimation of tectonic deformations (Fig. 1). We propose a measure
of heterogeneity to evaluate how this assumption is valid for a
given data set. Assuming steady incremental deformation, Ramberg
(1975) drew deformation trajectories by the numerical integration
of velocity gradient tensor. We introduce a method to draw them
without the integration.

Pre-deformation shapes are rarely known in nature. However,
they can be inferred in balanced cross-sections (e.g., Woodward
et al., 1989). The sections place quantitative constraints on the
long-term tectonic deformations. We applied our method to such
sections. We ignore area changes during deformation. The validity
of this treatment is discussed in the final section. The areas of
deformation markers in a section are used only as the weights of
data in the mathematical inversion to determine the deformation
gradient tensor that represent the shape changes of the markers.
The numerical examples for the present method are presented
using artificial and natural data sets in x5. The important symbols
used in this paper is listed in Table 1.
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2. Formulation

2.1. Problem statement

The deformations that affect parts of a rock body are assumed to
be represented by a deformation gradient tensor, F. This tensor is
defined as the transformation matrix of the pre- and post-
deformation position vectors,

X ¼ FX; (1)

where X and X are the vectors, respectively. F is also called position
gradient tensor (e.g., Zhang and Hynes, 1995), meaning that not the
absolute but relative positions are important for describing defor-
mation. That is, the origin of the position vectors can be chosen
arbitrarily.

To determine F, we use the ellipses fitted to the pre- and post-
deformation configurations through Teague’s (1980) technique.
The problem we are tackling is how F is determined using the n
pairs of pre- and post-deformation ellipses, each of which is

characterized by its aspect ratio, R, and major-axis orientation, f,
with respect to a reference orientation in the plane where defor-
mation is considered. We neglect area changes during deformation.
This condition is written as det F ¼ 1, because this determinant
denotes volume change (Spencer, 2004, p. 93).

Suppose that we have the n pairs of ellipses that represent pre-

and post-deformation markers, and let ðRðkÞi ;f
ðkÞ
i Þ and ðRðkÞf ;f

ðkÞ
f Þ

be the paired data of the kth ellipse, where the subscripts ‘i’ and
‘f’ distinguish the pre- and post-deformation quantities. The
problem we consider, here, is how F is determined from

ðRð1Þi ;f
ð1Þ
i Þ;.ðRðnÞi ;f

ðnÞ
i Þ and ðRð1Þf ;f

ð1Þ
f Þ;.ðRðnÞf ;f

ðnÞ
f Þ with the

constraint, det F ¼ 1.

2.2. Necessary conditions for the parameter space of inversion

Given the tensor, F, it is possible to calculate the aspect ratio and

major-axis orientation ðRðkÞc ;fðkÞ
c Þ of the ellipse that is derived from

ðRðkÞi ;f
ðkÞ
i Þ (Section 3.2). Accordingly, F can be determined by

mathematical inversion. That is, the optimal F is determined by
minimizing the sum of the dissimilarities or distances between

ðRðkÞc ;fðkÞ
c Þ and ðRðkÞf ;f

ðkÞ
f Þ. The distance indicates the residual of the

optimal solution. Then, how do we define the distances?
Objective methods for estimation of model parameters require

optimization of a cost function, representing a measure of distance
between the observations and the corresponding model pre-
dictions (e.g., Ebtehaj et al., 2010). The naive answer to the question
is to use the quantity, d ¼ ½ðRf � RcÞ2 þ ðff � fcÞ2�1=2, as the dis-
tance for the kth deformation marker. This answer implicitly use
the Euclidean plane with the rectangular Cartesian coordinates, R
and f, with d being Euclidean distance. The quantity is a bad dis-
tance measure (Yamaji, 2008, 2013), because any difference in f

does not make sense for the case of R ¼ 1. The significance of this
difference becomes greater with increasing R. In addition, the el-
lipses with the same aspect ratio but different f values, 0 and 180�,
are identical, though the f values are different.

If two ellipses are represented by the symbols, E1 and E2, their
distance, d (E1, E2), must satisfy the five conditions (Yamaji and Sato,
2006):

1. Non-negativity: dðE1; E2Þ � 0.
2. Identity of indiscernibles: d (E1, E2) ¼ 0 if and only if E1 ¼ E2.
3. Symmetry: d (E1, E2) ¼ d (E2, E1).
4. Triangle inequality: dðE1; E3Þ � dðE1; E2Þ þ dðE2; E3Þ, where E3

represent an ellipse.
5. Invariance: d (E1, E2) is independent from the choice of refer-

ence orientation.

Fig. 1. (a) Schematic configuration of heterogeneous deformation. (b) The deformation is approximated to a homogeneous one (solid lines) by coarse graining.

Table 1
List of symbols. The upright roman subscripts, ‘i’ and ‘f,’ are used to distinguish the
quantities of pre-deformation (initial) and post-deformation (final) states,
respectively.

A(k) Area of the kth deformation marker
dH() Hyperbolic distance Eq. (5)
G Angle of elevation of p Fig. 4
F Deformation gradient tensor Eq. (1)
Fp Deformation gradient tensor

corresponding to pure shear
Eq. (12)

Fr Deformation gradient tensor
corresponding to rigid-body rotation

Eq. (10)

H Heterogeneity Eq. (17)
H2 Unit hyperboloid Eq. (2)
I Identity tensor
J Minkowski tensor Eq. (7)
M3 Three-dimensional Minkowski space
n Number of deformation markers
p Pole vector of a plane in M3 Fig. 4
R Aspect ratio of an ellipse
Tp Transformation matrix in M3 corresponding

to pure shear in the physical space
Eq. (11)

Tr Transformation matrix in M3 corresponding
to rigid-body rotation in the physical space

Eq. (9)

x0, x1, x2 Rectangular Cartesian coordinates in M3 Fig. 2
f Major-axis orientation of an ellipse
r Radial coordinate on H2 Eq. (3), Fig. 2
j Tangential coordinate in M2 Eq. (3), Fig. 2
� Lorentzian inner product Eq. (6)

* Lorentzian outer product Eq. (13)
jj jj Minkowski norm Eq. (8)
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