
3D form line construction by structural field interpolation (SFI) of geologic strike
and dip observations

Michael Hillier*, Eric de Kemp, Ernst Schetselaar
Geological Survey of Canada, 3D Imaging and Earth Modelling, 615 Booth St., Ottawa, Ontario K1A 0E9, Canada

a r t i c l e i n f o

Article history:
Received 21 August 2012
Received in revised form
24 January 2013
Accepted 27 January 2013
Available online 15 February 2013

Keywords:
Structural anisotropy
Dip
Strike
Interpolation
Form line
Vector field

a b s t r a c t

Interpreting and modelling geometries of complex geologic structures from strike/dip measurements
using manually-drafted structural form lines is labour intensive, irreproducible and inherently limited to
two dimensions. Herein, the structural field interpolation (SFI) algorithm is presented that overcomes
these limitations by constructing 3D structural form lines from the vector components of strike/dip
measurements. The SFI interpolation algorithm employs an anisotropic inverse distance weighting
scheme derived from eigen analysis of the poles to strike/dip measurements within a neighbourhood of
user defined dimension and shape (ellipsoidal to spherical) and honours younging directions, when
available. The eigen analysis also provides local estimates of the plunge vector and associated Woodcock
distribution properties to assure plunge-normal structural form line reconstruction with unidirectional
propagation of form lines across fold and fan structures. The method is advantageous for modelling
geometries of geologic structures from a wide range of structurally anisotropic data. Modelled vector
fields from three case studies are presented that reproduce the expected bedding-foliation geometry and
provide reasonable representation of complex folds from local to regional scales. Results illustrate the
potential for using vector fields to support geologic interpretation through the direct visualization of
geometric trends of structural features in 3D.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Structural field data provides important information for under-
standing geologic structures from outcrop to crustal scales (Moores
and Twiss, 1995; Fossen, 2010). They provide valuable insight into a
region’s deformational history especially if additional information
on the relationships between different structural elements is
available (Ramsay, 1967). For example, bedding and cleavage inter-
section angles can be used to determine fold facing directions
(Borradaile, 1976). Geologic interpretation has a long and rich his-
tory of using form traces, extended and interpolated, and the pat-
terns of these traces, to resolve complex poly-deformed structural
features (Alsop and Holdsworth, 1999; de Kemp, 2000). Obtaining
geometric representations of geologic structures involvesmodelling
its geometry from the structural data using a range of scales.
Traditionally this analysis has been conducted by geologists that
combine field observations on locally-observed structural styles
with knowledge on the regional geological setting to arrive at

plausible representations on 2D maps and cross sections (Lisle,
1988). Apart from being limited to labour-intensive two dimen-
sional projections, these knowledge-driven representations are
subjective anddifficult toupdatewhennewstructural data becomes
available. Interpolation methods have however advanced the
interpretive process to resolve and visualize fold geometries and
fabric trajectories with various mathematical techniques
(Matheron, 1955b, 1971; Watson, 1971, 1985; Briggs, 1974;
Agterberg, 1974; Charlesworth et al., 1976; Cowan, 1996; Lajaunie
et al., 1997; Mitas and Mitasova, 1999; Calcagno et al., 2008).
These have been applied to digitized or regional interpreted serial
sections to reconstruct complex structures to regional map scales
(Moore and Johnson, 2001). Iterative approaches using finite
element models for fold modelling at crustal scales (Yamato et al.,
2011) or outcrop scales (Frehner and Schmalholz, 2006) are
becoming more common. In conjunction there is more of a trend to
develop tools for analysing andparameterizing foldmetrics (Stabler,
1968; Srivastava and Lisle, 2004; Lisle and Toimil, 2007; Adamuszek
et al., 2011) all enhancing our abilities to achieve a 3D and 4D un-
derstanding of the more challenging structures of the earth.

Hereinwe present a numerical algorithm that extends earlier 2D
directional data interpolation methods to the third dimension by
generating reproducible 3D vector field representations of
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geological structures from structural measurements. The 3D
structural field interpolation (SFI) algorithm uses the three vector
components derived from the strike/dip measurements and also
uses the younging directions (depositional top) if these are avail-
able. A component of this work is the proper assignment of polarity
to dip vectors derived from strike/dip measurements. The vector
polarity assignments are made such that the interpolation of the
dip vectors produces a vector field that traces the geometry of the
underlying geology as recorded in the structural data. The younging
directions, if available, are incorporated into the interpolation,
which helps in better constraining opposing limbs of fold struc-
tures. When younging directions are unknown or when applied on
foliation data, the reconstructed structural form lines are also
produced, but with the assumption that opposing attitudes from
girdle (great circle) distributions are due to folding. As a result, fan
structures are not automatically honoured. However, if fan struc-
tures are known to exist, they can be modelled by assigning the
appropriate younging directions to the strike/dip measurements.
Other difficulties in modelling vector fields, as with any interpo-
lation method, can be attributed to the distribution of data with
respect to scale, which can result in under representation or
smoothing of structural forms. The core notion here is that we
provide a tool in SFI to quickly and objectively characterize and
visualize structural geometries from whole or sub-sets of the raw
data.

The idea of using a “vector field” approach has been known in
geology for some time (Agterberg, 1974; Barbotin, 1987; Lee and
Angelier, 1994; Gumiaux et al., 2003). Applications were related
to visualizing strain and vector fields in 2D. Our approach is unique
in that it: (1) reconstructs structural form lines in 3 dimensions, (2)
incorporates structural anisotropy, (3) infers polarity on structural
measurements when younging directions are not available, and (4)
uses a regional symmetry axis to decide the direction to build the
structural form lines.

The structure of this paper is as follows. In Section 2, we provide
a detailed description of the SFI algorithm. In Section 3, the results
of three case studies are summarized with the objective of testing
the general performance of the algorithm. In Section 4, the ad-
vantages and limitations of the algorithm are discussed. Lastly, we
summarize our conclusions in Section 5.

2. 3D structural vector field interpolation algorithm

The SFI algorithm follows four analytical steps: (1) eigen ana-
lyses of the poles to strike/dip measurements, (2) polarity assign-
ment of dip vectors derived from strike/dip measurements, (3)
rotation of polarity-assigned dip vectors to an orientation that is
normal to the plunge vector, (4) 3D structural form lines compila-
tion. These steps are described in detail in the following sections.

Pseudocode of the algorithm is provided in Appendix 1.

2.1. Eigen analysis of strike/dip poles

Eigen analysis of the poles to the strike/dip data is an integral
part of the SFI algorithm and is used to: (1) model structural an-
isotropies in the interpolation of strike/dip vector components, if
such anisotropies exist, (2) provide an estimate of the local and
global plunge vector, which are needed to generate a vector field of
form lines normal to the local plunge vector for representation of
structural geometry and (3) to test for distribution properties (i.e.
girdle, or point cluster distributions) for data-driven recognition of
fold/fan structures using Woodcock’s analysis (Woodcock, 1977).

The eigen analysis is performed on data contained within user-
defined neighbourhoods centred on each input data point. Two
types of neighbourhood searches can be specified, spherical and

ellipsoidal. Spherical neighbourhoods can be a better choice in re-
gions where the data is noisy and in regions where the structural
trends change very rapidly. In these types of environments isotropic
sampling of the data ismore desirable to determine structural trends.
Ellipsoidal neighbourhoods are oriented by user specification or from
computed eigenvectors. When oriented by user specification struc-
tural trends can be biased along its principal axis andmay be justified
if some expert knowledge exists to support a stronger anisotropy. The
neighbourhoods can be propagated one of two ways e 1) Minimum
number of members, and 2) geometry. The local anisotropy at each
input data point is modelled by constructing the following pole
orientation matrix using the N normal vectors (ni) derived from
structural measurements found within its neighbourhood
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Upright poles are assumed for structural measurements that are
not attributedwith younging direction. Eigen analysis of thismatrix
yields eigenvalues, E1, E2 and E3 with

E1 < E2 < E3 (2)

and eigenvector matrix, V,

V ¼
2
4 e1x e2x e3x
e1y e2y e3y
e1z e2z e3z

3
5 (3)

where e1
�!

; e2
�!

; e3
�!, are the eigenvectors associated with the ei-

genvalues E1, E2 and E3. These eigenvectors locally define the
principle directions of structural anisotropy.

The local plunge vector for an input data point is the eigenvector
e1
�!(associated with eigenvalue E1) obtained from the data point’s
pole orientation matrix (Eq. (1)). This eigenvector describes the
direction inwhich the poles vary the least. The global plunge vector
is calculated in the same way, by eigen analysis of the pole orien-
tation matrix of all structural measurements.

From the above eigen analysis the Woodcock parameter K
(Woodcock, 1977) defined by

K ¼
In
�
E3=E2

�

In
�
E2=E1

� (4)

is computed to classify orientation distributions into one of two
categories e clusters (K > 1) and girdles (K � 1). Supported fold
structures are marked by girdle distributions, while cluster distri-
butions describe orientations that are roughly pointing in the same
direction. The computed K parameter is used for two purposes.
First, it is used for determining whether or not there is a supported
fold structure from a collection of structural measurements not
attributed with younging direction. This knowledge allows us to
infer the younging direction and is used to assign the appropriate
polarity to dip vectors. Second, if a girdle distribution is indicated,
the computed plunge vector ð e1�!Þ is assigned to the associated
input data to reconstruct the true (plunge-normal shape) geometry
of the structures. Neighbourhoods that do not possess a girdle
distribution are assigned the global plunge vector.
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