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a b s t r a c t

We present a theoretical model for Large Amplitude Folding (LAF) of a single, viscous layer embedded in
a viscous matrix. LAF analysis is rooted in the first order thick-plate analysis but extends it by incor-
porating two growth rate corrections. 1) Following Fletcher (1974), the growth rate is modified according
to the evolution of the wavelength to thickness ratio. 2) A growth rate reduction is introduced based on
the rate of arclength shortening, as originally developed by Schmalholz and Podladchikov (2000).
Through comparison with numerical models, we show that the simultaneous application of the two
corrections in LAF provides a good prediction of the evolution of fold geometry parameters up to large
amplitudes irrespective of the particular initial perturbation geometry and viscosity ratio. In the case of
the multiple waveforms perturbation, we predict a coupling of the evolution of waveforms. We show
that the irregular (non-sinusoidal) or localized final fold shape, commonly observed in nature, can be
predicted using LAF.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The wide range of fold shapes observed in nature can be
attributed to the various controlling parameters, e.g., initial layer
geometry, amount of shortening, material properties, and folding
mechanism. In order to be able to infer these controlling parame-
ters from the final fold shape, their relation to the fold geometry
must to be established. Various approaches have been explored:
analytical studies (e.g., Biot, 1957, 1961; Fletcher, 1974; Johnson and
Fletcher, 1994; Ramberg, 1961; Schmalholz and Podladchikov,
2000), analogue (e.g., Abbassi and Mancktelow, 1992; Cobbold,
1975; Hudleston, 1973b), and numerical modelling (e.g., Dieterich
and Carter, 1969; Kocher et al., 2008; Mancktelow, 2001; Parrish,
1973). An up to date review can be found in Hudleston and
Treagus (2010).

Folds originate from the growth of small, geometrical irregu-
larities on the layer interfaces (Biot, 1957, 1961; Fletcher, 1974). Any
interface perturbation can be represented as a sum of sinusoidal
components (e.g., Fletcher and Sherwin, 1978; Mancktelow, 2001).
Linear stability analysis predicts that during the small amplitude
stages of deformation these components grow independently of
each other, each with a specific exponential growth rate (e.g.,
Abbassi andMancktelow,1992; Biot,1961; Fletcher,1974). By taking

into account the evolution of wavelength and thickness during
shortening, the validity of the exponential solution can be extended
up to the point when the fold limb dips reach 10e20�. At this stage,
the wavelength selection process is considered to lock and the
further fold growth takes place at nearly constant arclength and
thickness (Fletcher and Sherwin, 1978; Hudleston, 1973a). The
correction for the evolution of wavelength and thickness was
employed in two- and three-dimensional folding analysis (Fletcher,
1974, 1991; Sherwin and Chapple, 1968). In the case of the two-
dimensional analysis, the information about the wavelength
selection preserved in the arclength and thickness of large ampli-
tude folds was used to establish a relation between the arclength to
thickness ratio, and the layer stretch and the viscosity ratio
(Fletcher and Sherwin, 1978).

Another approach for large amplitude folding was presented by
Schmalholz and Podladchikov (2000). They attributed the driving
force of folding to the rate of arclength shortening rather than the
rate of background shortening, as in the previously mentioned
approach. This modification results in a slowdown of the amplitude
growth, which marks the transition between nucleation and
amplification regime of the fold evolution (Schmalholz, 2006b). The
amplitude at which the transition occurs is referred to as crossover
amplitude (Schmalholz and Podladchikov, 2000). The model was
derived based on thin-plate analysis and focused specifically on
folds where the initial noise represents the single sinusoidal
waveform with dominant wavelength. Based on this model,
Schmalholz and Podladchikov (2001) constructed a strain map,
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which allows the viscosity ratio and strain to be inferred. FAS was
later extended for three-dimensional folding by Kaus and
Schmalholz (2006).

Here, we develop a new model of single layer folding in linear
viscous materials that is valid up to large amplitudes. We derive
a closed system of ordinary differential equations that describes the
evolution of the fold geometry parameters. We base the analysis on
the thick-plate solution for the instantaneous growth rate and
include both of the above-mentioned corrections, namely 1) the
correction for the evolution of the wavelength to thickness ratio
and 2) the correction for the slowdown of the amplitude expo-
nential growth. Following Schmalholz and Podladchikov (2000),
the latter correction is introduced with correction factor. In our
model, which we refer to as LAF, we derive a new expression for the
correction factor, which makes the model suitable for the analysis
of the evolution of the fold geometry parameters from both single
and multiple (random or localized) waveform perturbations. The
new expression for the correction factor in case of the multiple
waveform perturbation leads to the coupling of the individual
waveforms.

To demonstrate the advantages of the simultaneous incorpora-
tion of both corrections, we compare our model with the one of
Fletcher (1977) and a modified version of Schmalholz and
Podladchikov (2000), where the thick- rather than the thin-plate
solution is employed (as in Schmalholz, 2006b). In addition, we
provide comparisons with finite element models. We show that for
single waveform perturbations LAF gives the most accurate results.
In the case of multiple waveforms perturbations, LAF is the first
model that predicts the fold evolution up to large amplitudes.

The analysis incorporated in LAF advances our understanding of
how folds develop up to large amplitudes for both single and
multiple waveforms perturbation. Moreover, LAF is characterized
by its simplicity and broad applicability, thus provides a new
perspective on the study of the folding process.

2. Fold amplitude evolution models (single sinusoidal
waveform)

We consider a viscous single layer embedded on both sides in
viscous half-spaces. H denotes the thickness of the layer. Both the
layer and matrix are linear viscous, homogeneous, isotropic, and
incompressible fluids. Perfect welding between the layer and
matrix is assumed. In the absence of body forces, the model is
subjected to pure shear with a background shortening rate denoted
by Dxx (where Dxx < 0). Both layer interfaces are perturbed with
a synchronized sinusoidal waveform (further referred to as the
waveform)

yðxÞ ¼ A cosð2px=lÞ (1)

where A is the amplitude, x and y are the spatial Cartesian coor-
dinates, and l denotes the wavelength of the waveform. The
wavenumber k is proportional to the reciprocal of the wavelength

k ¼ 2p=l (2)

Tilde is used to denote normalization of the wavelength and the
wavenumber with respect to layer thickness, i.e. ~l ¼ l=H and
~k ¼ kH.

2.1. Small Amplitude Solution (SAS)

According to the linear stability analysis (Biot, 1957), the
amplitude evolution is governed by

dA
ds

¼ Að1þ qÞ (3)

where q is the growth rate dependent on the waveform, and
s ¼ �Dxxt is a dimensionless time. Using the thick-plate analysis,
Fletcher (1977) obtained an exact result for the growth rates of
infinitesimal amplitudes for linear viscous materials

q ¼ 4~kð1� RÞR
2~k
�
R2 � 1

�� ðRþ 1Þ2$exp
�
~k
�
þ ðR� 1Þ2$exp

�
�~k
� (4)

where R is the viscosity ratio between layer and matrix. The
maximum growth rate is experienced by the wavelength of the
dominant waveform (further referred to as dominant wavelength)
~l
d
(Biot, 1957).
Due to layer shortening and layer thickening, the normalized

wavenumber ~k of a waveform increases with dimensionless time,
which we refer to as waveform evolution. To the first order, the
change of ~k is given by Fletcher (1974).

~k ¼ ~k0expð2sÞ (5)

The amplitude, to the first order, is found to follow an expo-
nential growth

A ¼ A0exp
Zs
0

½1þ qðs0Þ�ds0 (6)

where s0 denotes the variable of integration. The amplitude evolu-
tion can be calculated numerically using e.g., a high-order Rungee
Kutta scheme. The maximum amplification is recorded by the
wavelength of the preferred waveform (further referred to as
preferred wavelength) ~l

p
(Sherwin and Chapple, 1968). Under the

approximation that the growth rate spectrum for the logarithm of
the wavenumber is symmetric about the dominant wavelength, the
preferred wavelength can be estimated by scaling the dominant
wavelength with the layer-parallel stretch (Johnson and Pfaff, 1989).

~l
p ¼ ~l

d
expð�sÞ (7)

The initial preferred wavelength is ~l
p
0 ¼ ~l

d
expðsÞ. The model

provides a good approximation to the amplitude evolution for limb
dips (wA/l) up to 10e20� (Chapple, 1968; Fletcher and Sherwin,
1978). We refer to this model as the Small Amplitude Solution
(SAS).

2.2. Finite Amplitude Solution (FAS)

Schmalholz and Podladchikov (2000) derived the Finite Ampli-
tude Solution (FAS), where perturbed flow in folding is driven by an
effective layer shortening rate rather than the applied background
shortening rate. An approximation for the effective layer shortening
rate is the rate of arclength shortening. We use c to denote the ratio
between the rate of change in the fold arclength DL normalized by
the fold arclength L and the rate of background shortening Dxx.

c ¼ DL

Dxx
¼ 1

L
vL
vt

1
Dxx

¼ �1
L
vL
vs

(8)

The growth rates in FAS are modified according to

qFAS ¼ q$c (9)

and we refer to the ratio c as the correction factor. Schmalholz and
Podladchikov (2000) derived a formula for the correction factor
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