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a b s t r a c t

Basic mathematical functions are applied for the two-dimensional geometrical and kinematical analysis
of different fold shapes. Relationships between different fold parameters are established and related to
the bulk shortening taking place during folding under upper crustal conditions. The bulk shortening
taking place during constant arc length folding is mathematically related to the bulk shortening during
homogenous pure shear using a particular aspect ratio, which is for folding the ratio of amplitude to half
wavelength and for pure shear the ratio of vertical to horizontal length of the deformed, initially square
body. The evolution of the fold aspect ratio with bulk shortening is similar for a wide range of fold shapes
and indicates that the fold aspect ratio allows a good estimate of the bulk shortening. The change of the
geometry of individual layers across a multilayer sequence in disharmonic folding indicates a specific
kinematics of multilayer folding, referred to here as “wrap folding”, which does not require significant
flexural slip nor flexural flow. The kinematic analysis indicates that there is a critical value for constant
arc length folding between shortening values of 30e40% (depending on the fold geometry). For short-
ening values smaller than the critical value limb rotation and fold amplitude growth are dominating. For
shortening larger than this value, faulting, boudinage and foliation development are likely the domi-
nating deformation process during continued shortening. The kinematical analysis of constant arc length
folding can be used for estimating the bulk shortening taking place during multilayer folding which is an
important component of the deformation of crustal rocks during the early history of shortening. The bulk
shortening is estimated for a natural, multilayer detachment fold and the shortening estimates based on
the kinematic analysis are compared and supported by numerical finite element simulations of multi-
layer detachment folding in power-law materials.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Folding, faulting and layer-parallel homogeneous shortening are
three mechanisms for the deformation (shortening) of layered
rocks in fold-and-thrust belts (Dixon and Liu, 1992). The research
on folds and folding covers a wide range of studies focusing on
different topics such as: (1) using and synthesizing mathematical
functions to describe fold geometries (Currie et al., 1962; Stabler,
1968; Hudleston, 1973a; De Paor, 1996; Bastida et al., 1999, 2005;
Jeng et al., 2002; Aller et al., 2004), (2) analytical solutions
employing different rheologies for analyzing folding processes
(Chapple, 1968; Johnson and Ellen, 1974; Johnson and Honea,

1975a,b; Biot, 1961, 1964, 1965a,b; Schmalholz et al., 2002), (3)
numerical and analogue modeling of single- and multilayer folding
investigating dominant wavelengths and amplification rates
(Sherwin and Chapple, 1968; Hudleston, 1973a,b; Abbassi and
Mancktelow, 1990, 1992; Vacas Peña and Martínez Catalan, 2004;
Jeng and Huang, 2008), (4) analyzing the geometry of folded
layers using the layer thickness perpendicular to layering and
parallel to the fold axial plane as variables (Ramsay, 1967;
Hudleston, 1973c; Ramsay and Huber, 1997), (5) investigating the
kinematic implications of folding by studying the type and distri-
bution of strainwithin the folded layers (Johnson and Honea,1975a,
Hudleston et al., 1996; Bastida et al., 2003, 2005, 2007; Bobillo-Ares
et al., 2006), and (6) studying folds in relation to other structures
such as faults, boudins, foliations and lineations (Sengupta, 1983;
Mawer and Williams, 1991; Kobberger and Zulauf, 1995; Kraus
and Williams, 1998; Mitra, 2003; Savage and Cook, 2003).

In this study, we apply kinematic models of constant arc length
folding for estimating the bulk shortening taking place during
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folding. The kinematic models are based on geometrical models
describing observed fold shapes in profile view. Fold profiles are
sections (orthogonal to the fold axis) of folded lines and their
geometry can be approximated with mathematical functions.
Different functions have been suggested for this purpose, which
can be grouped in two major categories: non-periodic functions
(Hudleston, 1973a; De Paor, 1996; Bastida et al., 1999, 2005; Aller
et al., 2004; Bastida et al., 2005) and periodic functions (Currie
et al., 1962; Stabler, 1968; Hudleston, 1973a; Bastida et al., 1999;
Jeng et al., 2002).

This study briefly summarizes and builds on previous work on
the geometry of a single folded layer in a two-dimensional profile
(e.g. Stabler, 1968; Hudleston, 1973a,b; Bastida et al., 1999). The
study applies basic mathematical procedures for shortening
analysis of folds, and the quantities limb dip, interlimb angle, arc
length, curvature, aspect ratio (i.e. ratio of fold amplitude to half
wavelength) and area under the folded layer are analyzed for
different fold types. The presented kinematical analysis is applied
to estimate the bulk shortening that took place during folding of
a natural multilayer detachment fold. The results of the kinematical
analysis are compared with an analytical solution for the
mechanical process of viscous single-layer folding and with
numerical finite element simulations of ductile, multilayer
detachment folding. The comparisons show that the kinematical
folding analysis can provide good approximations for the bulk
shortening during folding. Potential applications of the presented
analyses for estimating the shortening, the variations of the
geometry in a folded sequence, and the fold growth are discussed.

2. Fold geometry

2.1. Representing fold geometries with mathematical functions

Fitting all fold shapes with one type of mathematical function is
not suitable because geometries of natural folds vary significantly.
For example,methods forfitting foldswith ellipses (Mertie,1959) are
unsuitable for an accurate representation of fold shapes and many
common fold styles (e.g. chevron folds) cannot be represented at all.

Representing fold shapes with Fourier series received most
attention (see Norris, 1963; Chapple, 1964, 1968; Harbaugh and
Preston, 1965, Stabler, 1968; Hudleston, 1973a; Ramsay and
Huber, 1997) because many folds are naturally periodic. The Four-
ier analysis of fold shapes is useful for sinusoidal fold shapes (see
Stabler, 1968; Hudleston, 1973a), however, it has some drawbacks
when applied to other fold shapes (see Bastida et al., 2005).

Several studies (Bastida et al., 1999; Aller et al., 2004; Bastida
et al., 2005; Lisle et al., 2006) suggested a range of functions for
representing fold shapes. Bastida et al. (1999) suggested a power
function:

y
y0

¼
�
x
x0

�n

(1)

in which n characterizes the fold shape, x0 and y0 are the coordi-
nates of the inflexion point on the fold limb, and y and x are the
vertical (i.e. parallel to the fold axial plane) and horizontal coordi-
nates, respectively. In order to have a common coordinate system2

and to analyze the fold limb between an inflection point at the
origin of the coordinate system and the fold hinge we use a similar
function:

y ¼ 4
A
w
�
1� ð1� xÞn�; (2)

where A and w are the amplitude and wavelength of the fold,
respectively. This equation does not have the inconveniences of Eq.
(1) which are described in Bastida et al. (2005). Equation (2) can be
modified to a function for the variable pwhich is the aspect ratio of
the fold and defined as the ratio of fold amplitude to half the fold
wavelength (Twiss, 1988):

y ¼ 2p
�
1� ð1� xÞn�: (3)

For n¼ 1 Eq. (3) is

y ¼ 2px; (4)

and represents ideal chevron folds.
For n¼ 2 Eq. (3) is

y ¼ 2p
�
2x� x2

�
; (5)

and represents parabolic folds.
Applying a power of 0.5 to the right term in braces in Eq. (5)

results in

y ¼ 2p
�
2x� x2

�0:5
; (6)

and represents ellipsoidal folds.
Using n> 2 in Eq. (3) produces double hinge fold shapes (see

Table 1).
Equations (3)e(6) and the Fourier series for the first harmonic

can be used to describe a wide variety of fold shapes. These
equations are not based on one type of function and, therefore, lack
the continuity of fold shapes which is for example a feature of the
power function of Eq. (1) (Bastida et al., 1999). However, because of
the wide diversity of natural fold shapes we represent here basic
fold shapes with specific functions that best fit the observed fold
shape (see Table 1).

Cuspate folds are not represented with any specific function
because all functions listed in Table 1, except the linear function,
represent different shapes of cuspate folds when they are mirrored
against the chord of the fold’s quarter wavelength.

2.2. Basic geometrical implications of fold shapes

The interlimb angle, i, of upright symmetrical chevron folds is
related to their aspect ratio, p:

i ¼ 2 arctan
1
2p

: (7)

Ghent and Hansen (1999) used an equation similar to Eq. (7),
however, what they termed fold wavelength is in fact the fold’s half
wavelength. The interlimb angle is increasingly smaller for sinu-
soidal, parabolic and double hinge folds for the same value of p. The
maximum dip of the fold limb, l, at the inflection point of upright

Table 1
General functions for different fold geometries used in this study for analyzing fold
geometry and kinematics.

Fold type General function

Chevron y¼ 2px
Sinusoidal y¼ 2p sin(p/2x)
Parabolic y¼ 2p(2x� x2)
Ellipsoidal y¼ 2p(2x� x2)0.5

Double hinge (box) y¼ 2p(1� (1� x)n); n> 2

2 Following Hudleston (1973a) and Ramsay and Huber (1997), this paper assumes
the y axis of the coordinate system passing through inflection point of the fold and
parallel to the axial surface of the fold. The x axis also passes through the inflection
point, and is perpendicular to the y axis.
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