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a b s t r a c t

The clustering and classification of fracture orientations are important in rock mechanics and in brittle
tectonics, the latter of which includes the paleostress analysis of extension fractures hosting dikes or
mineral veins. Here, we present an unsupervised clustering method for the orientations of extension
fractures using mixed Bingham distributions. The method not only detects the elliptical clusters and
girdles made by the poles to such planar features, but also determines the appropriate number of those
groups by means of Bayesian information criterion (BIC) without a priori information. The method was
tested with artificial data sets, and successfully detected the assumed groups, when the clusters had little
overlaps. However, clusters with the common maximum concentration orientation and large aspect
ratios were distinguished, provided that their minimum concentration orientations were separated by
a large angle. Our method separated two stress states from natural data from a Miocene dike swarm in
SW Japan. The method also evaluated the probabilities of the stresses to form each of the dike.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The clustering of orientation data is important in various
branches of science and engineering. Discontinuity orientations in
rock material are carefully observed when surface and under-
ground excavations are made from efficiency and safety stand-
points (Priest, 1993). Their orientation distribution is important for
wellbore stability (Chen et al., 2008) and groundwater hydrology
(e.g., Panda and Kultilake, 1999; Ohtsu et al., 2008). Accordingly,
various clustering techniques for the orientations have been
proposed since the 1970s by researchers mainly in civil engineering
(e.g., Shanley and Mahtab, 1976; Wallbrecher, 1978; Hammah and
Curran, 1998, 1999; Peel et al., 2001; Marcotte and Henry, 2002;
Klose et al., 2005; Jimenez-Rodriguez and Sitar, 2006). Dortet-
Bernadet and Wicker (2008) suggest that Peel et al. (2001), who
clustered rock joints, stimulated researchers in other fields of
science to tackle the problem.

Such clustering is important for understanding brittle tectonics
as well. The orientations of healed microcracks (Lespinasse and
Pécher, 1986; Kowallis et al., 1987) and joints (Whitaker and
Engelder, 2005) are thought to indicate paleostress orientations.

In addition, dike and vein orientations are used to infer all the axes
of the paleostress at the time of the vein or dike formation (Baer
et al., 1994; Jolly and Sanderson, 1997; Yamaji et al., 2010). The
clustering of vein orientations was used by Ahmadhadi et al. (2008)
to infer the timing of folding. The clustering of fracture orientations
has potential for investigating polyphase tectonics.

Fault-slip analysis has been used to study polyphase tectonics
(e.g., Etchecopar et al., 1981; Nemcok and Lisle, 1995; Yamaji, 2000;
Shan et al., 2003; Sato, 2006; Yamaji et al., 2006). The fault-slip data
resulting from such tectonics are called heterogeneous. Likewise,
we call a data set heterogeneous, if the data are collected from the
fractures that should be classified into some groups with different
origins.

In this paper we present a clustering method for dealing with
heterogeneous orientation data. It is assumed that the poles to
planar features of the same origin make an elliptical cluster or
a girdle that is approximated by a Bingham distribution (Bingham,
1974). This is the simplest orientation distribution to delineate
them (Fig. 1), and is easily related with the dilation of fractures by
overpressured fluids (Baer et al., 1994; Jolly and Sanderson, 1997;
Yamaji et al., 2010). Our method simultaneously fits a few Bing-
ham distributions to a set of heterogeneous data. That is, a mixed
Binghamdistribution is fitted to them. Our numerical technique not
only detects and separates the clusters and girdles, but also
determines their number from the orientation data themselves.
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The method was tested with artificial data sets to demonstrate its
resolution, and with natural data sets from a dike swarm.

The analysis of clustering of dike orientations and vein orien-
tations will stimulate structural geologists and researchers in
related areas. Once fractures are classified, radiometric dating,
paleomagnetic, petrological and geochemical analyses, etc., of the
members of each class shed new light on the formation of the dike
and vein clusters and on their tectonic, volcanological and hydro-
logical implications.

2. Bingham and mixed Bingham distributions

The Bingham distribution is the simplest extension of the
multivariate normal distribution to the three-dimensional orien-
tation distribution of lines (e.g., Love, 2007). It is convenient to
consider antipodally distributed points on a sphere to represent the
lines that meet at the center of the sphere. The Bingham distribu-
tion is depicted by a girdle or an elliptical cluster of such points.

An elliptical cluster or a girdle has orthorhombic symmetry if it
is described by the Bingham distribution. That is, it has the three
symmetry axes that meet at right angles; two of them indicate the
orientations of maximum and minimum concentrations. The
remaining axis is known as the orientation of intermediate
concentration. Following Love (2007), we use the unit column
vectors, e1, e2 and e3, to refer to the orientations of the minimum,
intermediate and maximum concentrations, respectively (Table 1).
The cluster center is represented by e3, which is identified with the
s3-axis in Section 5 (Baer et al., 1994; Jolly and Sanderson, 1997;
Yamaji et al., 2010).

The paired parameters, k1 and k2, distinguish uniform, elliptical
and girdle distributions (Fig. 1): They are negative in sign, and their
absolute values, jk1j and jk2j, indicate the concentration of data
points from e3 to e1 and from e1 to e2, respectively, on the sphere. A
uniform distribution is indicated by k1¼ k2¼ 0. Circular and ellip-
tical distributions are indicated by k1¼ k2< 0 and k1< k2< 0,

respectively. Girdle distributions are denoted by the parameters
that satisfy k1� k2) 0.

If points on a unit sphere obey Bingham distribution, they have
the probability density (Love, 2007)

PBðvjK;EÞ ¼ 1
A
exp

�
vTETKEv

�
;

where v is the unit vector representing an orientation, A is the
normalization constant, T indicates matrix transpose,
E ¼ ðe1; e2; e3Þ is the orthogonal matrix representing the attitude
of the Bingham distribution, and K ¼ diagðk1; k2;0Þ. The distribu-
tion has five degrees of freedom: three for the orthonormal vectors,
e1, e2 and e3, and two for the concentration parameters. Accord-
ingly, the parameters of the distribution are represented by
a position vector, x, in a five-dimensional parameter space
(Appendix A). That is, the paired parameters, {K,E}, have a one-to-
one correspondence with a point in the space. We refer PBðvjxÞ to
the probability density of the Bingham distribution with the
parameters that are denoted by x.

The Bingham distribution is so flexible as to denote either an
elliptical cluster or a girdle made by the poles to fractures.
Accordingly, it is useful to assume that a heterogeneous set of
orientation data obeys the mixed Bingham distribution, which has
the probability density

PmBðvjq;6Þ ¼
XK
k¼1

6kPB

�
v
���xk�; (1)

where K is the number of elliptical clusters or girdles, 6k is the
compounding ratio or the mixing coefficient (Bishop, 2006) of the
kth Bingham distribution of which parameters are represented by
xk. The coefficients satisfy 0 < 6k � 1 and 61 þ/þ6K ¼ 1: 6k

means the significance of the kth subset. The argument, q, of the
function PmB in Eq. (1) stands for all the K vectors:

q ¼
n
x1;x2;.;xK

o
; (2)

and another argument of the function is 6 ¼ f61;62;.;6Kg.
Fig. 2 shows an examplewith the parameters, K ¼ 2,61 ¼ 0:4 and

Fig. 1. Equal-area projections showing the probability densities of the Bingham
distributions with different k1 and k2 values, both of which are negative in sign. The
distributions have orthorhombic symmetry, meaning that they are symmetric with
respect to the planes perpendicular to the unit vectors, e1, e2 or e3. Note that the
stereograms have different contour intervals: the range between the minimum and
maximum densities, i.e., PBðe1jK;EÞ and PBðe3jK;EÞ, is divided into 5 intervals.

Table 1
List of symbols. Superscript at the upper left and upper right of a symbol denote,
respectively, the number of iterations in the EM algorithm and the consecutive
number of Bingham components in a mixed Bingham distribution. Circumflex
accents indicate the quantities of the mixed Bingham distribution optimized for
a data set.

BIC Bayesian information criterion
E Orthogonal matrix representing the symmetry axes of a Bingham

distribution
e1 The minimum concentration axis of a Bingham distribution
e2 The intermediate concentration axis of a Bingham distribution
e3 The maximum concentration axis of a Bingham distribution
K The number of Bingham component of a mixed Bingham distribution
K Diagonal matrix with the diagonal components, k1, k2 and 0
L Logarithmic likelihood function
N The number of data
PB Probability density function of Bingham distribution
PmB Probability density function of mixed Bingham distribution
v Unit vector normal to a fracture plane
vn v of the nth fracture
x A five-dimensional vector representing a Bingham distribution
zn

k The membership of the nth datum to the kth Bingham component or
The responsibility of the kth one for the nth datum

q The set of the K vectors representing Bingham distributions
k1, k2 Concentration parameters of a Bingham distribution (k1� k2� 0)
6 The set of K mixing coefficients
6k The mixing coefficient of the kth Bingham component
s1, s2, s3 Principal stresses (s1� s2� s3)
F Stress ratio
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