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a b s t r a c t

Clast-based vorticity gauges utilize orientations of grains assumed to have behaved as isolated rigid
particles suspended in a flowing viscous matrix. A fundamental assumption behind use of the method is
that sufficient strain has accumulated for high aspect ratio grains to rotate into positions approaching
their stable sink orientation, and that clasts below a critical aspect ratio may be observed in any
orientation relative to the flow plane. We constructed a numerical model to explore the effect of variable
finite strain on development of the orientation distribution of a large population of rigid clasts embedded
in a viscous medium for end-member pure and simple shear and for several distinct general shear flows.
Our model predicts the technique will tend to produce vorticity overestimates for lower vorticity flows
for a wide range of finite strain. The model also indicates that clast populations in moderate to high
vortical flows tend to develop shape preferred orientations that closely resemble those expected for
flows of lower vorticity. We conclude that clast-based methods are not effective for extracting detailed
kinematic information from a mylonite deformed in a flow with arbitrary boundary conditions. In fact, it
appears that most general shear flows continued long enough to develop moderateehigh finite strains
will tend to produce a clast orientation distribution that will yield a visual estimate of the critical aspect
ratio that suggests approximately equal contributions of pure and simple shear components.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Since the introduction of kinematic vorticity into the geological
literature (McKenzie, 1979; Means et al., 1980), and the develop-
ment of methods for extracting these data from naturally deformed
rocks (e.g., Passchier, 1986, 1987; Vissers, 1989; Wallis, 1992; Wallis
et al., 1993; Simpson and De Paor, 1993), structural studies of
orogenic belts have increasingly focused on determining the
boundary conditions of flow during ductile deformation in high-
strain zones. Results of these investigations have repeatedly
shown crustal-scale shear zones from a wide array of tectonic
settings involved a departure from ideal simple shear (e.g.,
Passchier, 1987; Vissers, 1989; Wallis et al., 1993; Xypolias and
Doutsos, 2000; Law et al., 2004; Jessup et al., 2006, 2007; Bailey
et al., 2007; Johnson et al., 2009). The implications of these
results are significant for several reasons. Consider a shallowly
dipping mylonite zone, a common feature in orogenic hinterlands,
deforming by simultaneous pure and simple shearing [here we
follow previous authors (e.g., Ramberg, 1975) in using the suffix-ing
to emphasize terms related to the deformation process]. The pure
shearing component of an isochoric, plane strain, sub-simple

shearing deformation causes thinning perpendicular to the zone
boundaries. Strain compatibility arguments require that material
must simultaneously stretch parallel to the shear zone boundary.
Material in such a narrowing-lengthening shear zone (Simpson and
De Paor, 1993; Tikoff and Fossen, 1999) is likely directed toward the
synorogenic topographic surface, causing a material flux from
lower to higher crustal levels (i.e., from orogenic core to foreland).
Purely geometric arguments indicate the magnitude and rate of
extrusion of material increase rapidly from the core to foreland of
the orogen forcing an increase in strain rate at higher structural
levels (Law, 2010). Such coupling of middle and shallow crustal
levels may help drive deformation in the orogenic foreland. This
simple example illustrates that reliable methods of determining
kinematic parameters from high-strain zones are critically impor-
tant for meaningful interpretation of structural evolution within
such ductile deformation zones.

Several vorticity gauges, including: (1) deformed vein sets
(Talbot, 1970; Hutton,1970; Passchier, 1986); (2) clast-based gauges
(Passchier, 1987; Simpson and De Paor, 1993;Wallis et al., 1993); (3)
quartz petrofabric and strain ratio (RXZ/b) (Wallis, 1992, 1995); (4)
oblique dynamically recrystallized grain shape foliation (Wallis,
1995); RXZ/d method of (Xypolias (2009, 2010); (5) angle between
macroscopic foliation and shear zone boundary (RXZ/q) (Tikoff and
Fossen, 1995); and (6) flanking structures (Grasemann and Stüwe,
2001) have been applied to natural rocks. Clast-based vorticity
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gauges are the most commonly applied to natural samples due to:
(1) their relative simplicity and rapid application; and (2) many of
the assumptions required for the technique to be valid are appar-
ently met (see Passchier, 1987). Early theoretical models published
by Masuda et al. (1995) indicated that clast-based techniques may
be useful to broadly discriminate between coaxial and non-coaxial
flow. However, evenwith the increased use during the last 15 years
(e.g., Passchier, 1987; Vissers, 1989; Wallis et al., 1993; Simpson and
De Paor, 1997; Holcombe and Little, 2001; Xypolias and
Koukouvelas, 2001; Bailey and Eyster, 2003; Law et al., 2004;
Carosi et al., 2006; Jessup et al., 2006, 2007; Xypolias and
Kokkalas, 2006; Bailey et al., 2007; Marques et al., 2007; Thigpen
et al., 2010), no advance has been made on understanding the
role finite strain plays on the evolution of clast orientation distri-
butions for different flow types.

Finite strain magnitude is critically important in all vorticity
estimation methods as it is either an explicit parameter (e.g., RXZ/q,
RXZ/b, and RXZ/d methods), or for the clast-based method in
particular, it is tacitly assumed that sufficient strain has accumu-
lated for high aspect ratio grains to have rotated into their stable
positions. Because finite strain is a fundamental parameter for
determining the porphyroclast orientation distribution produced
during deformation, we view the lack of knowledge of strain state
as a limit on the usefulness of vorticity estimates made solely from
clast-based techniques, and argue that multiple techniques should
be used to constrain deformation kinematics.

In this paper we first review the mathematical theory neces-
sary to describe pure, simple, and sub-simple shearing flow and
use this theoretical framework to model a large population of
rigid elliptical objects in viscous flows of variable kinematic
vorticity and at a wide range of finite strains. Our primary interest
lies in discovering if there exists a single value of finite strain
necessary to produce a well-organized orientation distribution for
different flow types. To this end we applied the governing
equations (and therefore assumptions and limitations) derived in
the seminal paper by Ghosh and Ramberg (1976). Some surprising
behavior is predicted at moderate to high kinematic vorticity and
high finite strains. Implications of these results are discussed in
a geological context.

2. Mathematical framework

2.1. Description of flow and progressive deformation

The velocity field about a point in a deforming continuum is
described by the velocity gradient tensor, L,

v ¼ Lx (1)

where v is a velocity vector, or the time derivative of position vector
x (i.e., v¼ dx/dt). The associated velocity gradient equations
become (Means et al., 1980):

vi ¼ Lijxj (2)

where vi are the velocity components at position xj at an instant in
time, and

Lij ¼
vvi
vxj

¼
�
L11 L12
L21 L22

�

(see Malvern, 1969, p. 146) are the spatial velocity gradients for
a two-dimensional flow (see Fig. 1). If the velocity gradient tensor
components Lij are constant the flow is homogeneous (Means et al.,
1980). For isochoric plane strain monoclinic flow with simulta-
neous pure and simple shearing, L may be written as

L ¼
�
_3x _g
0 _3y

�
(3)

where _3x is the pure shearing strain rate and _g is the simple
shearing strain rate, here taken perpendicular and parallel to the
abscissa, respectively. Setting _3y ¼ �_3x forces the deforming
material to be incompressible. The eigenvectors, xi, of L give the
orientations of the flow apophyses (Ramberg, 1975; Passchier,
1988).

The velocity gradient tensor, L, may be decomposed into the
symmetric stretching tensor, _S, and skew-symmetric vorticity
tensor, W (Malvern, 1969, p. 147; Bobyarchick, 1986)

L ¼ _SþW (4)

where

_S ¼

2
64 _3x

1
2
_g

1
2
_g _3y

3
75 (5)

and

W ¼

2
64 0

1
2
_g

�1
2
_g 0

3
75: (6)

The eigenvectors and eigenvalues of _S provide information on
the orientation andmagnitude of the instantaneous stretching axes
(ISAi) and instantaneous stretching rates ð_siÞ of the flow, respec-
tively. The vorticity tensor, W, has components of angular velocity
and describes the rotation rate of elements in the deforming
material.

The kinematic vorticity number, Wk, is a useful way of quanti-
fying the instantaneous non-coaxiality of the flow at a point in
space and an instant in time, and has a unique value for any distinct
flow. By definition, Wk is an instantaneous quantity, but for the
steady flows considered here the vorticity number remains
constant during progressive deformation. The quantity sr, defined
as the ratio of pure to simple shearing strain rate, sr ¼ _3x= _g (Ghosh
and Ramberg, 1976), is also a measure of the degree of non-
coaxiality of the flow and may be expressed as a function of the
kinematic vorticity number by the relation (Ghosh, 1987, Eq. (9))

sr ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
W2

k

� 1

s
: (7)

Conversely, the kinematic vorticity may be calculated from
knowledge of the instantaneous pure and simple shearing strain
rates by the relation

Wk ¼ cos
�
tan�1

�
2
_3x
_g

��
(8)

or more simply

Wk ¼ cosðaÞ (9)

where a is the acute angle between the eigenvectors (xi) of L (for
derivation see Bobyarchick, 1986). By choosing appropriate values
for sr orWkwe can form a velocity gradient tensor, L, to produce the
velocity field of a deformation of any vorticity number of interest.

From (8) it is clear that identical Wk values result from any
combination of _3x and _g that yield the same sr value. Thus, any
choice of _3x and _g that yield the same ratio give rise to identical
velocity fields; only the time required to accumulate a finite strain
state will vary. Note from (7) that sr increases without bound as
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