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a r t i c l e i n f o

Article history:
Received 22 November 2007
Received in revised form 7 April 2008
Accepted 15 April 2008
Available online 29 April 2008

Keywords:
Planar anisotropy
Single layer folds
Asymmetric folds
Numeric modelling
Finite element modelling
Viscous flow

a b s t r a c t

The influence of matrix anisotropy of variable orientation on single layer folding is investigated using
finite element models. Both linear (Newtonian) and power-law viscous materials are considered. The
results show that the available isotropic analytical solution, when modified to include an appropriate
approximation for the anisotropic viscosity, accurately predicts growth rates at small amplitude for
planar anisotropy oriented at a ¼ 45� to the competent layer for a wide range of normal viscosity ratios
between single layer and matrix (mc ¼ 10, 100) and degrees of anisotropy (d ¼ normal viscosity/shear
viscosity ¼ 2, 12, 25). For high normal viscosity ratio (mc ¼ 100), the deviation from the analytical solution
for other orientations increases with increasing degree of anisotropy but still remains relatively small
(<5% for d ¼ 25). For low normal viscosity ratio (mc ¼ 10), the differences for high d are more significant
and for a s 0�, 45�, or 90� also depend on the imposed boundary conditions. However, if carefully ap-
plied, the analytical solution does provide a benchmark test for numerical codes that include oblique
anisotropy. The numerical models at both small and finite amplitude show that a tight control on the
boundary conditions is crucial for experiments with anisotropic materials, especially when the anisot-
ropy is oblique to the boundaries. Analogue experiments with anisotropic materials, where boundary
conditions are more difficult to control, must therefore be designed and interpreted with caution. Matrix
anisotropy initially oriented obliquely with regard to the maximum shortening direction results in
asymmetric buckle folds in the single layer and asymmetric chevron folds in the matrix, even if the
deformation is purely coaxial. This is true for both linear and power-law materials and for a range of
boundary conditions, both free and constrained. Asymmetric natural fold structures in anisotropic
material do not therefore necessarily imply a component of non-coaxial flow.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As shown in an earlier study (Kocher et al., 2006), layer-parallel
anisotropy in the matrix has a strong influence on the infinitesimal
and large amplitude stages of single layer folding. The occurrence of
an internal instability in the matrix (e.g. Biot, 1965; Cobbold et al.,
1971; Cobbold, 1976; Latham 1985a,b; Fletcher, 2005), and its in-
terference with the single layer of higher viscosity, cause sub-
stantial changes in growth rates, dominant wavelengths,
amplification history, and finite structure pattern compared to an
isotropic material. In this previous study, we specifically considered
the situation where a pre-existing planar anisotropy is fixed to
material points from the onset of deformation and initially parallel
to an embedded, more competent single layer. Natural examples

would be finely layered sedimentary rocks, such as turbidites or
radiolarites, or metamorphic rocks with a strong foliation or
banding developed due to metamorphic segregation. In these cases,
the bulk anisotropic behaviour reflects the stacking of layers with
different viscosities or a set of closely-spaced slip surfaces (corre-
sponding to the ‘‘IMSS fluid’’ of Fletcher, 2005; see also Cobbold
et al., 1971). The anisotropy therefore remains parallel to the layer
boundaries during subsequent deformation if the material distri-
bution is not altered by metamorphic or metasomatic processes.
Because multilayered rocks are common in nature, this is an im-
portant case to consider in detail. However, it is only one end-
member of a more general situation, where both the degree of the
anisotropy and its orientation relative to the layer may vary both
initially and during deformation. For example, the approximately
planar foliation in natural slates and schists is typically oblique to
bedding or layering. In polydeformed terrains, subsequent
deformation leads to a crenulation or kinking of the foliation and to
second-phase folding of the layering. In this case, the obliquity of
the foliation may be expected to influence the dynamics of buckling
and the geometry of folds developed in the layering.
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In this paper, finite element models are used to consider pure
shear deformation of an isotropic competent layer embedded in
a rock matrix with differing initial degrees of planar anisotropy and
differing initial orientations of this planar anisotropy relative to the
layer. Both Newtonian and non-linear (power-law) viscous mate-
rials are considered. In particular, it is investigated: (1) if the ana-
lytical theories of Fletcher (1974) and Smith (1977) can still be
applied to determine growth rates and dominant wavelengths; (2)
if oblique anisotropy might cause asymmetric folds to develop in
a background flow field of pure shear; and (3) the influence of
oblique anisotropy on the matrix deformation processes.

2. Numerical method

The numerical experiments were performed using the finite
element code FLASH (Kocher, 2006) and an equivalent code of
Mancktelow (e.g. Viola and Mancktelow, 2005; Passchier et al.,
2005), which solve the Stokes equations in combination with
a non-linear anisotropic power-law rheology in the absence of
gravity. Nine-node quadratic elements for velocity discretization
are combined with a linear pressure approximation (three degrees
of freedom) to avoid chessboard patterns in pressure fields (e.g.
Cuvelier et al., 1986; Poliakov and Podladchikov, 1992). The
implementation of anisotropic viscosity in these codes follows
Mühlhaus et al. (2002a,b; their Eq. (8) in both publications), as
outlined in Kocher (2006) and Kocher et al. (2006, Appendix A). To
verify the results, both codes were tested on a number of model
setups for which analytical solutions are available, including the
analytical solutions of Fletcher (1974) for folding in linear and non-
linear viscous material, and Schmid and Podladchikov (2003) for
the stress and strain rate fields around an elliptical inclusion in
Newtonian fluids.

3. Influence of anisotropy orientation on growth rate
spectra of single layer folds

The analytical solutions of Fletcher (1974) and Smith (1975,
1977) predict the growth rates and dominant wavelengths of single
layer folds in power-law viscous material at infinitesimal ampli-
tudes. These two independent analytical derivations give equiva-
lent results for the growth rate spectra and here the equation of
Fletcher (1974) is used. In Kocher et al. (2006), it was demonstrated
that this analytical solution also allows the determination of
growth rates for layers embedded in a linear viscous anisotropic
matrix. This solution makes use of a proposal by Biot (1965) that the
bulk viscosity of an infinite anisotropic half-space can be approxi-
mated by m ¼ ffiffiffiffiffiffiffiffiffiffi

mnms
p

, where mn and ms are the normal and shear
viscosity of the material. The resulting analytical growth rate was
shown to be in good, though not perfect, agreement with the
results obtained from finite element analysis (max. error �5% for
the chosen parameters, cf. Fig. 2d of Kocher et al., 2006).

However, it has not yet been established if the analytical solu-
tion for growth rates in anisotropic material also applies to the
more general case of a non-layer parallel anisotropy orientation. To
check this, growth rate spectra of a single isotropic Newtonian layer
embedded in an anisotropic Newtonian matrix were calculated for
a normal viscosity contrast of mc ¼ 10 and 100. For each of three
degrees of anisotropy (d ¼ mn/ms ¼ 2, 12, and 25), growth rate values
were calculated for an angle between the competent layer and the
plane of anisotropy of a ¼ 0�, 20�, 45�, 70� and 90�.

The resulting growth rate spectra are shown in Fig. 1. The fol-
lowing observations can be made from these plots. (1) The numer-
ical results are symmetrical about an anisotropy inclination of 45� to
the competent layer. For example, the growth rates for an anisotropy
oriented at 0� and 90� or at 20� and 70� to the layer are identical
because these orientations are equally inclined relative to the 45�

orientation. This is to be expected because the constitutive (or
material) operator relating stress to strain rate in the anisotropic
matrix is symmetric (Mühlhaus et al., 2002a,b; Kocher et al., 2006,
Appendix A) and therefore insensitive to a switch in axes (equiva-
lent to a reflection across the 45� orientation). (2) The analytical
solution of Fletcher (1974) is best approximated by the numerical
results if the anisotropy is oriented at 45� to the competent layer. (3)
The numerical results for a ¼ 0� or 90� – for which the analytical
solution was initially proposed – show a good fit to the predicted
analytical values for high viscosity contrast (e.g. mc ¼ 100 in Fig. 1a–
c). (4) Overall, the model growth rates increasingly deviate from the
analytical curve with increasing degree of anisotropy but, for high
viscosity contrast (mc ¼ 100), the maximum deviation still remains
relatively small (<5% for d ¼ 25 and a ¼ 20� or 70� in Fig. 1c). (5) For
a s 45�, the fit of the numerical results to the analytical solution
deteriorates with decreasing normal viscosity contrast between
matrix and layer (e.g. mc ¼ 10 in Fig. 1d–f). (6) The growth rates for
a ¼ 0� or 90� are generally lower than the theoretical curve,
whereas those for a ¼ 20� or 70� are higher (at least for the
boundary conditions of Fig. 1, see below).

Fig. 2 shows a curve of the maximum growth rate as a function
of the angle a between the plane of anisotropy and the single layer,
for the same boundary conditions and material properties (mc ¼ 10,
d ¼ 25) as is in Fig. 1f. The expected reflection symmetry about the
45� direction is immediately obvious, with a maximum in the
growth rate at a z 12.5� and 77.5�. These results indicate that, with
free slip allowed on the side boundaries, the maximum initial
growth rate of the single layer fold occurs when the planar an-
isotropy is only slightly oblique. However, the outcome is strongly
influenced by the applied boundary conditions.

In Fig. 3, the effects of changing boundary conditions on the
growth rate at very small fold amplitude are investigated, with
a setup otherwise equivalent to Fig. 1f. For upper and lower model
limits that are far removed from the central layer (for Figs. 1–3, the
height of the model is eight times the width), a change in the upper
and lower boundary conditions from (1) free slip in the x direction
but prescribed vy, to (2) totally prescribed vx and vy, has no effect on
the growth rate. In run (3), the upper and lower boundaries were
fully prescribed as in (2) but vy was also set to zero at the inflection
points on the mid-line of the initial sinusoidal perturbation in the
single layer. This effectively ensures that the single layer itself cannot
rotate. As can be seen from Fig. 3, this has no effect on the growth
rates, even when the anisotropy in the matrix is oblique to the layer
and to the boundaries (e.g. for a ¼ 20� or 70�). In contrast, modifying
the side boundary conditions does have a significant influence on
the fold growth rate for orientations other than a ¼ 0�, 45�, or 90�. If,
rather than allowing free slip, vy on the sides is constrained to be
periodic (by assigning only a single global degree of freedom in vy to
every pair of corresponding nodes on either side), the growth rate
for a ¼ 20� or 70� is significantly lower, as seen for (4) and (5) in
Fig. 3, whereas there is no change for a ¼ 0�, 45� or 90�. There is thus
a markedly different response depending on whether the single
layer alone is constrained to not rotate (no significant effect) or both
the layer and anisotropic matrix are constrained to have no com-
ponent of bulk rotation (leading to a reduction in growth rate).

In summary, the numerically calculated growth rate spectra
show that in general the initial growth rates depend strongly on the
orientation of the anisotropy plane with respect to the competent
layer (Fig. 2), although the influence decreases for higher normal
viscosity contrast between layer and matrix (Fig. 1). However, as
was previously shown in Kocher et al. (2006), the geometry and
kinematics of finite-amplitude folding is also influenced by matrix
deformation processes, such as the formation of kink-bands or
chevron folds, and these effects are not considered in the in-
finitesimal amplitude analytical solutions nor in the corresponding
numerical models of Figs. 1–3.
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