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Batch servers are capable of processing batches of packets instead of individual packets. Although

batch-service queueing models have been studied extensively during the past decades, the focus was

mainly put on calculating performance measures related to the buffer content, whereas less attention

has been paid to the packet delay. In this paper, we focus on the tail probabilities of the delay that a

random packet experiences in a general batch-service queueing model. More specifically, we establish

approximations for these probabilities, which are highly accurate and easy to calculate. These results,

for instance, allow to accurately assess the probability that real-time packets experience an excessive

delay in practical telecommunication systems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Whereas servers in traditional queueing systems serve one
packet at a time, batch servers process batches of packets. The
maximum number of packets in a served batch is usually finite
and is called the server capacity, which we denote by c. An
inherent feature of batch service is that newly arriving packets
cannot join the ongoing service, even if the served batch is not
completely filled. In order to reduce the wasted capacity, one
often imposes a threshold, l (1r lrc), for the minimum amount
of packets in a served batch. This implies that the available server
solely initiates service when at least l packets have accumulated
in the system.

Batch-service queueing models have a wide area of applica-
tions, including transportation, production and manufacturing
systems (see e.g. [7,17]) and telecommunications (see e.g. [2]).
Batch-service queueing models are for instance employed to
assess the performance of burst-frame-based MAC protocols for
ultra-wideband (UWB) Wireless Personal Area Networks
(WPANs) [25]. A node in such a network typically has for each
combination of destination and Quality of Service (QoS) an output
and a transmission buffer. Upper-layer packets with the same
destination and QoS are stored in the same output buffer. When
the transmission buffer is empty and at least l packets have
accumulated in the output buffer, maximum c of these packets
are grouped into a burst and this burst is stored in the

transmission buffer (note that the transmission buffer can only
store one burst simultaneously). The burst will be removed from
the transmission buffer when an ACK frame from the receiver
arrives. Although UWB is a high-speed technology, the time spent
in the transmission buffer cannot be ignored due to the competi-
tion for the channel between the several output queues and the
synchronisation (process of synchronising the receiver’s clock
with the transmitter’s clock) time. The batch-service queueing
model in this paper can be used to model an output and
transmission buffer corresponding to a particular destination
and QoS: the output buffer is the queue of the batch-service
queueing model, the transmission buffer is the server and the
time that a burst resides in the transmission buffer is the service
time. This application example thus demonstrates that the
analysis of the delay in a batch-service queueing system with
general service times and a general batch forming policy is
important. This theoretical analysis is subject of this paper.

On account of the wide area of applications, batch-service
queueing models have been studied extensively. The empha-
sis was laid on the amount of packets in the system
(e.g. [1,5,6,8,17–19,21,24,28–30,32,33]). The packet delay, however,
has only attracted attention in [7,13,14,16,22,23,26,27]. In none of
these papers, models are studied with the combination of l41 and
batch arrivals.

In [9], we have computed the probability generating function
(PGF) of the packet delay in a discrete-time batch-arrival, batch-
service queueing model with l¼c and single-slot service times.
In [10], we have extended this model to geometrically distributed
service times and in [12] we have considered generally distrib-
uted service times and 1r lrc. The established PGF’s, though,
suffer from the drawback that they are not suitable to extract tail
probabilities. However, in several cases, this is an important
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performance measure. For instance, consider an output buffer
that stores voice packets. Voice packets are delay-sensitive,
meaning that when they arrive too late at the end user
(for instance after more than 150 ms), they become useless. The
quality of the upperlayer conversations is expressed in terms
of the (order of magnitude of the) probability of this event
(see e.g. [15]).

In view of this, we have established in [11] an approximation
for the tail probabilities of the delay that a random packet
experiences in the batch-arrival, batch-service queueing model
with single-slot service times and l¼c. In this paper, we extend
this previous research by considering the extended model with
lA ½1,c� and generally distributed service times. In addition, we
also obtain another approximation that allows us to more
accurately assess the delay performance in the batch-service
queueing model under study. The paper is organised as follows:
the model is described in detail in Section 2. The approximations
are established in Section 3, while in Section 4, we demonstrate
through some examples that these are highly accurate. Hence, the
approximation formulas can be adopted to accurately assess the
delay performance in practical batch-service queueing systems.

2. Model

In this paper, we consider a discrete-time queueing model.
Packets arrive one by one and several packets can arrive in a slot.
We call this batch arrivals. The number of packet arrivals during
consecutive slots is generated by an independent and identically
distributed (IID) process. The number of packet arrivals during
slot k is denoted by Ak; A represents the number of packet arrivals
during a random slot and its PGF is denoted by A(z).

The number of packets in a served batch is upper-bounded by
the server capacity c and lower-bounded by the threshold
l (1r lrc), implying that when the server becomes available
and finds less than l packets, he waits to initiate service and
leaves the already present packets in the queue until the begin-
ning of the first slot whereby at least l packets have accumulated
in the system. When the system contains more than c packets at
that time, the server only processes the first c packets and leaves
the others in the queue (according to the first-come-first-served
policy). Consecutive batch service times do not depend on the
number of packets in the served batches, nor on the number of
packet arrivals and they constitute an IID process. The service
time of any batch is designated by T and its associated PGF by T(z).

The results obtained in this paper are valid under the following
assumptions:

Assumption 1. The load r9E½A�E½T�=co1.

Assumption 2. R41, with R the radius of convergence of TðAðzÞÞ.

Assumption 3. limzmRTðAðzÞÞ=zc 41.

Assumption 4. zc�TðAðzÞÞ is aperiodic, meaning that the highest
common factor of the set of integers ffcg [ fnAN : ðdn=dznÞT

ðAðzÞÞ9z ¼ 0a0gg equals 1.

Note that Assumption 2 implies that RA41 and RT 41 with RA

and RT the radii of convergence of A(z) and T(z) respectively. Further,
Assumption 3 is always fulfilled if TðAðzÞÞ has a finite pole R. Vice
versa, if Assumption 3 is not fulfilled, then R necessarily is a branch
point of TðAðzÞÞ, and a separate ad hoc analysis of the packet delay
tail distribution is required.

3. Deducing the approximation formulas

In order to compute the probability that the delay W (being
the sojourn time in the queue) of a randomly tagged packet
exceeds some large value, we split the delay into two parts. We
illustrate this by means of the example depicted in Fig. 1. The
tagged packet’s arrival slot is denoted by J and QJ represents the
queue content (i.e. the number of packets in the queue, those
in service excluded) at the beginning of slot J. Further, B

(X respectively) represents the number of packet arrivals in slot
J arriving before (after respectively) the tagged packet. The first
part of the delay, W1, is the time required to serve the batches
with previously arrived packets. It is equal to the remaining
service time of the batch being served in slot J (if any), plus the
sum of bðQJþBÞ=cc service times, where b:c represents the floor
function, i.e. bxc ¼maxfnAN j nrxg. Hence, in the example,
W1 ¼ 3, because TðzÞ ¼ z, c¼10 and QJþB¼ 32. The second part,
W2, is the time until enough packets are present to fill the batch of
the tagged packet with at least l packets. Mark that exactly
ðQJþBÞmod c of the previously arrived packets are served in the
same batch as the tagged packet. As l¼5, ððQJþBÞmod cÞ ¼ 2,
X¼1, AJþ1 ¼ 0 and AJþ2 ¼ 3, W2 takes two slots in the example.
The total delay of the tagged packet then equals

W ¼maxðW1,W2Þ, ð1Þ

since the service of the tagged packet’s batch can commence only
if all preceding batches have been served, and the packet’s batch
itself contains at least l packets. Calculation of joint probabilities
of W1 and W2 is difficult. Therefore, we propose some lower and
upper bounds, that only require calculation of marginal tail
probabilities of W1 and W2.

On account of (1), we obtain

Pr½W4w� ¼ Pr½W14w3W24w�

¼ Pr½W14w�þPr½W24w��Pr½W14w4W24w�:

The following property paves the path towards establishment of a
lower bound:

Pr½W14w4W24w�rminðPr½W14w�,Pr½W24w�Þ: ð2Þ

A lower bound is obtained by assuming that the equality in (2)
holds, leading to

Pr½W4w�ZmaxðPr½W14w�,Pr½W24w�Þ: ð3Þ

An upper bound is established by assuming that Pr½W14w4
W24w� ¼ 0, leading to

Pr½W4w�rPr½W14w�þPr½W24w�: ð4Þ

Fig. 1. Illustration of W, W1 and W2 and introduction of some notations.
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