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Abstract

Mohr-circles are commonly used to represent second-rank tensors in two dimensions. In geology, this mainly applies to stress, flow, strain and
deformation. Three-dimensional second rank tensors have been represented by sets of three Mohr-circles, mainly in the application of stress.
This paper demonstrates that three-dimensional second rank tensors can in fact be represented in a three-dimensional reference frame by
Mohr surfaces, which are members of the cyclide family. Such Mohr-cyclides can be used to represent any second rank tensor and are exem-
plified with the stress and flow tensors.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Historical background

Mohr diagrams, one of the most used and useful tools in
structural geology, were introduced by German scientist Otto
Mohr (1882). As a civil engineer, Mohr was especially inter-
ested in mechanical forces acting on planes and, thus,
presented the scientific community with a graphical represen-
tation for three-dimensional stress, plotting normal stress (sn)
versus shear stress (t). The result was the familiar Mohr dia-
gram for stress, consisting of the three principal circles of
stress and the surface they encompass, where any plane P
can be plotted and assigned values for sn and t, with their ori-
entation given in terms of single or double angles. This graph-
ical representation has since been used extensively in
empirical mechanical problems, either using failure envelopes
or as a tool to study fracture opening and reactivation (e.g.
Delaney et al., 1986; Jolly and Sanderson, 1997).

The Mohr-circle concept was adapted for strain tensors by
Nadai (1950), who devised a graphical representation of qua-
dratic elongation versus shear strain, where angles between
lines are plotted in the unstrained form. The plot is in all
ways similar to Mohr’s diagram and establishes a parallel be-
tween the principal circles of stress and the principal sections
of the deformation ellipse. Nadai (1950) also defined a Mohr
diagram for reciprocal strain, with reciprocal quadratic elonga-
tion versus reciprocal shear strain.

Mohr diagrams were formally introduced to structural geol-
ogy by Brace (1961), who coined the term and explored its
multiple applications in the study of deformed rocks. This
new line of research was not lost and Ramsay (1967) further
demonstrated the relevance of Mohr diagrams in strain analy-
sis, showing that Mohr circles for reciprocal strain could be
used to represent strain ellipses. Means (1982) introduced
the Mohr diagram for the stretch tensor, where he explored
the potential of polar coordinates and its applications to the
study of material line behaviour, encompassing both rotational
characteristics and stretch. Further research developed numer-
ous applications of Mohr diagrams for strain to structural ge-
ology problems, namely inhomogeneous deformation (Means,
1983), strain refraction (Means, 1983; Treagus, 1983), strain
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analysis (Treagus, 1986 (which includes a comprehensive
background on the history of Mohr diagrams in Structural Ge-
ology); Lisle and Ragan, 1988; Passchier, 1990a; Treagus,
1990; Simpson and De Paor, 1993; Vissers, 1994; Zhang and
Zheng, 1997) and vorticity analysis (Passchier and Urai,
1988; Passchier, 1990b). Mohr diagrams for flow (velocity
gradient) tensors were introduced by Lister and Williams
(1983), following an idea of J.P. Platt. Since then, works
like Means (1983), Bobyarchick (1986), Passchier (1986,
1987, 1988, 1993), Wallis (1992), Simpson and De Paor
(1993) showed how these diagrams could be used to interpret
and understand the principles of progressive deformation.

1.2. Tensors and Mohr-circles

As demonstrated first by Otto Mohr (1882), all tensors can
be represented by Mohr diagrams. The relationship between
a tensor Tij and its Mohr-circle can be illustrated with a sec-
ond-rank tensor, which requires four components (Fig. 1). In
a 2D Mohr space, the vertical axis Tij is used to plot tensor
components T12 and T21, whereas horizontal coordinates stand
for the Tii components, T11 and T22. Thus, two points can be
plotted (Means, 1982): x1 as (T11, �T21) and x2 as (T22,
T12). Either the T12 or the T21 sign has to be changed from
the original tensor components to insure equivalence of posi-
tions above or below the horizontal axis of the Mohr diagram.
The convention of Means (1982) considers �T21, and defines
Mohr-diagrams of the first kind (De Paor and Means, 1984). If,
on the other hand, one considers �T12, the Mohr-diagram is
said to be of the second kind (De Paor and Means, 1984).
Points x1 and x2 define a diameter (dashed line) of a circle,
which represents the Mohr-circle of tensor Tij (Fig. 1). Any
given tensor can be described by an infinite number of sets
of Tij components, each representing a description of the ten-
sor in a specific reference frame. Considering all these

possible sets, a Mohr circle can be defined as ‘‘(.) the geo-
metrical locus of all possible sets of tensor components’’
(Means, 1992).

Second-rank tensors in three dimensions, with nine compo-
nents, can also be represented by Mohr-circles. The easiest
way to do this is to consider only part of the full tensor. An
example of this ‘‘technique’’ is the literature published on ve-
locity gradient tensors, which, for Mohr-diagram purposes,
simplifies flow to monoclinic geometries, characterised by
the vorticity vector parallel to one of the eigenvectors and
one of the instantaneous stretching axes. Assuming this,
a tensor

Tij ¼

������
T11 T12 0
T21 T22 0
0 0 T33

������
can be reduced to

Tij ¼
����T11 T12

T21 T22

����
and plotted straightforward as a Mohr-circle, ignoring the
three-dimensional component given by T33. A second method
was suggested by Otto Mohr himself, for the case of stress, ap-
plied later to quadratic deformation. The stress (deformation)
tensor is written as a diagonal matrix, where Tii are the eigen-
vectors of the tensor and the principal stresses s1,s2,s3 (for in-
stance Fig. 3), or the principal quadratic elongations l1,l2,l3.
These components are then used to draw three circles, or
half-circles, that represent the principal sections of the stress
or finite strain ellipsoid.

1.3. Scope

However ingenious, Mohr-circles for second-rank tensors
remain simplifications because Mohr-space is always consid-
ered to be two-dimensional. This means that in order to accom-
modate a three-dimensional second-rank tensor in Mohr-space,
it must be partitioned into three two-dimensional second-rank
tensors, resulting in a combination of three Mohr-circles. In
other words, the so called ‘‘three-dimensional diagram’’ for
stress is, in fact, a two-dimensional representation of three
eigenvector sections of a second-rank symmetric tensor.

The purpose of this paper is to investigate the possibility of
expanding the representation of tensors into a three-dimen-
sional Mohr-space, using examples of stress and flow. After
some initial testing, it turned out that real three-dimensional
Mohr-diagrams do exist and are represented by surfaces of
the cyclide family and related toroids. These surfaces share
all the useful properties of 2D Mohr-diagrams, with the advan-
tage of a full three-dimensional geometry. They will be hence-
forth referred to as Mohr-cyclides. Symbols and conventions
are listed in Appendix A.

Fig. 1. Mohr-circle for an unspecified tensor Tij, defined by two alternative di-

ameters: solid: using random tensor components; dashed: using the eigen-

values e1 and e2.
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