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a b s t r a c t

We study in this paper the problem of finding in a graph a subset of k edges whose deletion causes the

largest increase in the weight of a minimum spanning tree. We propose for this problem an explicit

enumeration algorithm whose complexity, when compared to the current best algorithm, is better for

general k but very slightly worse for fixed k. More interestingly, unlike in the previous algorithms, we

can easily adapt our algorithm so as to transform it into an implicit enumeration algorithm based on a

branch and bound scheme. We also propose a mixed integer programming formulation for this

problem. Computational results show a clear superiority of the implicit enumeration algorithm both

over the explicit enumeration algorithm and the mixed integer program.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In many applications involving the use of communication or
transportation networks, we often need to identify critical infra-
structures. By critical infrastructure we mean a set of links whose
damage causes the largest perturbation within the network.
Modeling this network as a weighted graph, identifying critical
infrastructures amounts to finding a subset of edges whose
removal from the graph causes the largest increase in the total
weight. In the literature this problem is referred to as the k most
vital edges problem. In this paper, we are interested in determin-
ing a subset of edges of the graph whose deletion causes the
largest increase in the weight of a minimum spanning tree (MST).
This problem is referred to as k MOST VITAL EDGES MST.

The problem of finding the k most vital edges of a graph has been
investigated for various problems including shortest path [1,9,15],
maximum flow [22,18,23], 1-median and 1-center [2]. For the
minimum spanning tree problem defined on a graph G with n

vertices and m edges, Frederickson and Solis-Oba [6] showed that,
for general k, k MOST VITAL EDGES MST is NP-hard and proposed an
Oðlog kÞ-approximation algorithm. The problem remains NP-hard
even for complete graphs with weights 0 or 1 and 3-approximable
for graphs with weights 0 or 1 [3]. For a fixed k the problem is
obviously polynomial. The case k¼1 has been largely studied in the
literature [7,8,20]. Hsu et al. [7] gave two algorithms that run in
Oðm log mÞ and Oðn2Þ. Iwano and Katoh [8] proposed an algorithm in

Oðmaðm,nÞÞ using Tarjan’s result [21], where a is the inverse
Ackermann function. Pettie [16] improved the results of Tarjan [21]
and Dixon et al. [5], giving rise to the current best deterministic
algorithm in Oðm log aðm,nÞÞ. For general k, several exact algorithms
based on an explicit enumeration of possible solutions have been
proposed [11,12,19]. The best one [11] runs in time Oðnka
ððkþ1Þðn�1Þ,nÞÞ and was achieved by reducing G to a sparse graph.
Using Pettie’s result [16], the running time of the later algorithm
becomes Oðnk log aððkþ1Þðn�1Þ,nÞÞ.

In this paper, we propose a new efficient algorithm also based on
an explicit enumeration of all possible solutions for k MOST VITAL EDGES

MST. Its complexity Oðnk log að2ðn�1Þ,nÞÞ for fixed k is theoretically
very slightly worse than the complexity of the algorithm proposed by
Liang [11] using Pettie’s result [16]. However, given the fact that
aðm,nÞ is always less than 4 in practice, the complexity of these two
algorithms can be deemed as equivalent. Moreover, the complexity of
our algorithm is better than that of Liang’s algorithm for general k.
More interestingly, unlike any other algorithm, our algorithm has two
specific useful features. First, it can also determine an optimal
solution for i MOST VITAL EDGES MST, for each 1r irk, with the same
time complexity. Second, it can be easily adapted to establish an
implicit enumeration algorithm based on a branch and bound
procedure. We also present in this paper a mixed integer program-
ming formulation to solve k MOST VITAL EDGES MST. We implement
and test all these proposed algorithms using, for the implicit
enumeration algorithm, different branching and evaluation strategies.
The results show that the implicit enumeration algorithm is much
faster than the explicit enumeration algorithm as well as the
resolution of the mixed integer program. Moreover, the implicit
enumeration algorithm can handle significantly larger instances due
to a better use of memory space. Finally, we also propose an
e-approximate algorithm.
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The rest of the paper is organized as follows. In Section 2, we
introduce notations and some results related to our problem. In
Section 3, we present a new explicit enumeration algorithm that
solves k MOST VITAL EDGES MST. In Section 4, we propose another
exact algorithm based on an implicit enumeration scheme. In
Section 5, we present a mixed integer programming formulation
for k MOST VITAL EDGES MST. Computational results are presented in
Section 6. We also include in these experiments an E-approximate
version of our implicit enumeration scheme. Conclusions are
provided in Section 7.

2. Basic concepts and preliminary results

Let G¼ ðV ,EÞ be a weighted undirected connected graph with
9V9¼ n, 9E9¼m, where wðeÞZ0 is the integer weight of each edge
eAE. We denote by G�E0 the graph obtained from G by removing
the subset of edges E0DE. k MOST VITAL EDGES MST consists of
finding a subset of edges SnDE with 9Sn9¼ k that maximizes the
weight of a MST in the graph G�Sn. We assume that G is at least
ðkþ1Þ edge-connected, since otherwise any selection of k edges
including the edges of a minimum unweighted cut is a trivial
solution. Therefore, we assume krlðGÞ�1, where lðGÞ is the
edge-connectivity of G. Also, without loss of generality, we
suppose in the following that all weights are different (by
introducing, if necessary, an arbitrary total order on edges with
the same weight). This non-restrictive assumption implies the
uniqueness of minimum spanning trees or forests. For a non-
necessarily connected graph, a minimum spanning forest (MSF) is
the union of minimum spanning trees for each of its connected
components. In this paper, a tree or a forest is considered as a
graph but also, for convenience, as a subset of edges. For a set of
edges F, w(F) represents the sum of the weights of the edges in F.

We denote by T0 the MST of G. Remark that an optimal
solution of k MOST VITAL EDGES MST must contain at least one edge
of T0. For iZ1, let Ti be the MSF of the graph Gi ¼ G�

Si�1
j ¼ 0 Tj. We

use in the following the graph UG
k ¼ ðV ,

Sk
j ¼ 0 TjÞ, which has the

following interesting property.

Lemma 1 (Liang and Shen [12]). For any SDE, 9S9rk, any edge of

the MST of graph G�S belongs to UG
k .

By Lemma 1, solving k MOST VITAL EDGES MST on G reduces to
solving the same problem on the sparser graph UG

k whose number
of edges is at most ðkþ1Þðn�1Þ.

Considering T a MST of a graph, the replacement edge r(e) for
an edge eAT is defined as the edge e0ae of minimum weight
which connects the two disconnected components of T\feg. The
sensitivity of a minimum spanning tree T, i.e. the allowable
variation for each edge weight so that T remains a minimum
spanning tree, can be computed in Oðm log aðm,nÞÞ [16]. In
particular, for edges in T, this algorithm provides replacement
edges. As a consequence, we get the following result.

Lemma 2. 1 MOST VITAL EDGES MST defined on a graph with n vertices

and m edges is solvable in Oðm log aðm,nÞÞ.

Proof. Let Tn be the minimum spanning tree in a given graph. We
calculate the replacement edges r(e) for all edges eATn. The most
vital edge is the edge en such that wðrðenÞÞ�wðenÞ ¼maxeATn

wðrðeÞÞ�wðeÞ. &

Actually, replacement edges belong to a specific subset of
edges as shown by the following result.

Lemma 3. For each edge eATi, we have rðeÞATiþ1 for

i¼ 0, . . . ,k�1.

Proof. Given a graph G, Liang [11] shows that for each edge eAT0,
rðeÞAT1. Applying this to graph Gi, for which Ti is the MSF, we get
the result. &

3. An explicit enumeration algorithm for finding the k most
vital edges

We propose an algorithm that constructs a search tree of depth
k�1 in a breadth-first mode. The branching scheme is similar to
the standard scheme used for enumerating the k best solutions
[14,10]. In this scheme, the subset of solutions is partitioned by
excluding a subset of edges and including another subset of edges.
More precisely in our case, at the ith level of the search tree,
i¼ 0, . . . ,k�1, a node s is characterized by:

� mv(s): a subset of i edges that are excluded. These edges
correspond to a tentative partial selection of the k most vital
edges.
� ~UðsÞ ¼UG0ðsÞ

k�9mvðsÞ9
, where G0ðsÞ ¼ ðV ,E\mvðsÞÞ. Hence, we have ~UðsÞ

¼ ðV ,
Sk�9mvðsÞ9

i ¼ 0 TiðsÞÞ, where Ti(s) is the MSF in G0ðsÞ�
Si�1

j ¼ 0 TjðsÞ.

� mst(s): a subset of edges that must be included and are
forbidden to deletion. These edges belonging to T0ðsÞ, will
necessarily belong to any MST associated with any descendant
of s. Depending on the position of s in the search tree, the
cardinality of mst(s) varies from 0 to n�2.

Denote by Ni, for i¼ 0, . . . ,k�1, the set of nodes of the search
tree at the ith level. We describe in the following the exact
algorithm (Section 3.1) and exemplify its use on an illustrative
example (Section 3.2).

3.1. Description of the algorithm

We first construct the graph Uk
G. Let a be the root of the search tree

with mvðaÞ ¼mstðaÞ ¼ |, ~UðaÞ ¼UG
k , wðT0ðaÞÞ ¼wðT0Þ, and N0 ¼ fag.

For a level i, 0r irk�2, we compute for each node sANi and
each edge eAT0ðsÞ, the replacement edges r(e) in T1ðsÞ. Node s

gives rise to n�1�9mstðsÞ9 children in Niþ1. Each such child d,
corresponding to an edge ej in T0ðsÞ\mstðsÞ ¼ fe1, . . . ,en�1�9mstðsÞ9g, is
characterized by:

� mvðdÞ ¼mvðsÞ [ fejg.
� mstðdÞ ¼mstðsÞ [ ð[j�1

‘ ¼ 1fe‘gÞ.

� ~UðdÞ is updated from ~UðsÞ as follows (using Lemma 3):

� T0ðdÞ ¼ T0ðsÞ [ frðejÞg\fejg and hence wðT0ðdÞÞ ¼wðT0ðsÞÞ

�wðejÞþwðrðejÞÞ.
� For j¼1, y, k�9mvðdÞ9, Tj(d) is obtained from Tj(s) by deleting

the replacement edge erep of the edge deleted from Tj�1ðsÞ and
replacing it by its replacement edge rðerepÞATjþ1ðsÞ. If for a
level i and an edge erep, then the replacement edge rðerepÞ does
not exist, TjðdÞ ¼ TjðsÞ\ferepg and T‘ðdÞ ¼ T‘ðsÞ for ‘¼ jþ1, . . . ,
k�9mvðdÞ9. If for a level i, TiðsÞ ¼ |, then T‘ðdÞ ¼ | for
‘¼ i, . . . ,k�9mvðdÞ9.

At level k�1, for each node sANk�1 and for all edges
eAT0ðsÞ\mstðsÞ, we find r(e) in T1ðsÞ and determine a node sn

that verifies maxsANk�1
maxeAT0ðsÞ\mstðsÞðwðT0ðsÞÞ�wðeÞþwðrðeÞÞÞ. An

optimal solution is the subset mvðsnÞ [ feng, where en ¼ arg
maxeAT0ðsnÞ\mstðsnÞ wðT0ðs

nÞÞ�wðeÞþwðrðeÞÞ. The largest weight of a
MST in the partial graph obtained by deleting this subset is
wðT0ðs

nÞÞ�wðenÞþwðrðenÞÞ.
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