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a b s t r a c t

Theoretical solutions have been proposed recently for various competent layerematrix systems, including
elastic, viscous and elasto-viscous materials. Furthermore, three type fold-forms of buckling fold had been
proposed. These solutions were obtained based on the most simplified, one-dimensional governing
equations. Therefore, these solutions require further validation by observing the two-dimensional folding
behaviors. This work utilizes numerical analyses to study the buckling and post-buckling behaviors of
various layerematrix systems. As a result, it was found that for competence contrast RS 10 the fold-forms
obtained by numerical simulation agree well with those theoretical solutions. Three types of fold-forms
can be generated and the resulting wavelengths are also close to the predictions. The fold evolution during
the post-buckling stage is explored up to high amplitudes, and the results indicate that the fold-forms can
remain the same or be changed from one type to another type, depending on the types of layerematrix
system, the applied strain rates, the original fold-forms at buckling, etc. The fold behaviors from buckling
to the post-buckling stage of the layerematrix systems are presented.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

For a stiff, competent layer of rock stratum embedded in
relatively softer matrix, the lateral compression of this competent
layerematrix system can induce folding of the rock stratum and
surrounding matrix, which is often referred as buckle-folding.
Research on buckle-folding can be dated to the early 1900s
(Smoluchowski, 1909). Field observations and interpretations
focused on formation, wavelength and thickness have been made
regarding the appearance of folds and mechanism (Sherwin and
Chapple, 1968; Donath and Parker, 1964; Hudleston, 1986;
Hudleston and Lan, 1993). To further explore the mechanism,
studies based on laboratorial experiments to explore evolution have
been conducted (Biot et al., 1961; Hudleston, 1973b; Fletcher, 1974;
Dubey and Cobbold, 1977; Abbassi and Mancktelow, 1990, 1992;
Mancktelow and Abbassi, 1992; Treagus and Sokoutis, 1992).
Theoretical solutions considering various material types (elastic,
viscoelastic and viscous) have accordingly been developed (Karman
and Biot, 1940; Biot, 1957, 1959, 1961; Currie et al., 1962; Ramberg,

1961, 1963, 1964; Chapple, 1968; Smith, 1975, 1977, 1979; Jeng
et al., 2001; Jeng and Huang, 2008), and the fold formation in
deformed layers are considered according to the competence
contrast between layer and matrix. Studies considered in more
sophisticated conditions have also been conducted, e.g. for single
layer systems (Chapple, 1969; Cobbold, 1975, 1976, 1977; Fletcher,
1974, 1977; Hudleston, 1973a,b; Hudleston and Stephansson, 1973;
Hudleston and Lan, 1994; Hunt et al., 1996a,b; Kocher et al., 2008;
Lan and Hudleston, 1991, 1996; Mancktelow, 1999; Mühlhaus
et al., 1994; Schmalholz and Podladchikov, 1999, 2000; Treagus,
1973; Williams et al., 1977; Zhang et al., 1996, 2000); for stresse
strain analysis (Dieterich and Carter, 1969; Hobbs, 1971; Hudleston
et al., 1996; Treagus, 1981, 1983, 1999, 2003); for bending folds
(Latham, 1985a,b); for deformation rate (Price, 1975; Johnson and
Fletcher, 1994; Mühlhaus et al., 1998, 2002a,b; Schmalholz and
Podladchikov, 2001a,b,c; Treagus, 2003); for heterogeneous defor-
mation (Passchier et al., 2005); for nonperiodic folds (Whiting and
Hunt, 1997) and a brief summary is given by Price and Cosgrove
(1990). In these studies, folding with a single wavelength, the
so-called dominant wavelength, has been recognized.

In addition to the findings of previous researches, folds with
dual wavelength or decaying amplitude were found possible, when
considering the solutions in a more general manner (Mühlhaus
et al., 1998; Jeng et al., 2001, 2002; Jeng and Huang, 2008; Hobbs
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et al., 2008). Furthermore, it is necessary to consider that the
material properties of the competent layer and the matrix may
change with the local environments e.g. temperature and pressure
conditions. These conditions can be simply expressed in elastic,
viscoelastic and viscous materials. The three types of material can
have six kinds of possible combinations for real geological condi-
tions. Two-component notations are used hereafter to indicate the
layerematrix system. For instance, the notations EeE, EeEV, EeV
represent the cases of an elastic layer respectively embedded in the
elastic, viscoelastic and viscous matrix. The solutions for six
possible models (EeE, EeEV, EeV, EVeEV, EVeV and VeV) have
been established (Biot, 1961; Currie et al., 1962; Jeng and Huang,
2008).

It was identified that the resulting waveforms depend on the
amount of compression, and could be expressed in terms of lateral
force or lateral strain in rock layer, when bucking (or folding)
occurs. The relation of the lateral compression at the moment of
buckling (3xB) and the resulting wavelength l for the six aforemen-
tioned models is conveniently summarized in Table 1 (Biot, 1961;
Currie et al., 1962; Jeng and Huang, 2008). In general, the 3x

B � l
relationship has the typical appearance as shown in the left-side of
Fig. 1. The upper curve is related to the fold-form with dual-
frequencies and the lower curve is the fold-form with single
frequency yet with decaying amplitude. The intersection of the
upper and the lower curves is the Type B fold-form, which is also
referred as fold-form at critical state (Biot, 1961; Currie et al., 1962).
These three types of fold-form are depicted in the right-side of
Fig. 1. Among these six models, EeE and VeV models are found to
be strain rate-independent and the other four models are strain
rate-dependent (Jeng and Huang, 2008). For convenience, Table 2
summarizes the response of the six models when subjected to
extreme strain rates.

In developing theoretical solutions for the six models, two-
dimensional folding phenomena are simplified as one-dimensional
governing equations (Biot, 1961; Currie et al., 1962; Hunt et al.,
1996a,b; Schmalholz and Podladchikov, 1999, 2000; Jeng and
Huang, 2008). Therefore, there is still a suspicion that the one-
dimensional governing equations yielding solutions may not be
adequate to simulate two-dimensional buckling fold-forms.
Moreover, the governing equation is the state of force (or stress)
equilibrium at the moment of buckling and thus the solutions can
only represent the fold-form at themoment of buckling. The folding
evolution throughout entire deformation history after the buckling
stage is important. Thus, it is of interest to ask what will happen
after the buckling? Can the fold-form maintain same wavelength?
Or, will thewavelength, even the type of fold-form, be changed after
the folds have been generated, during the post-buckling stage of
deformation? For the sake of convenience, the deforming process
after the fold initiation is called post-buckling stage.

Previous research indicated that numerical simulations based
on finite element method yielded reasonable fold-forms. The
resulting dominant fold-form by numerical simulation with high
competence contrast agreed with the theoretical solution (Zhang
et al., 1996, 2000; Mancktelow, 1999, 2001; Jeng et al., 2002). As
to other models (EeEV, EVeEV, EVeV, EeV), comparisons are not
completely made because some solutions have been only recently
proposed (Jeng and Huang, 2008). This research aimed at exploring
the above-mentioned questions based on two-dimensional
numerical analyses. The observations focus on: What are the types
of fold-form corresponding to different degrees of lateral
compression? This also means: can three types of fold-form really
happen in numerical simulation? How well do the resulting
wavelengths agree with the theoretical solutions as summarized in
Table 1? Are these models really rate-dependent or rate-indepen-
dent as described by the theoretical solutions? What is theTa
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