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Abstract

Constrained automated seeded region growing (CASRG) is an algorithm for automated grain boundary detection. It uses as input a single

digitised microphotograph, such as ones obtained from a polarising microscope with an attached digital camera. In addition to this, it requires the

user to click on the clasts within the microphotograph that the user wishes to obtain boundaries for. The algorithm requires no subsequent human

input. The algorithm is based on the seeded region growing (SRG) algorithm of Adams and Bischof [Adams, R., Bischof, L., 1994. Seeded region

growing. IEEE Transactions on Pattern Analysis Machine Intelligence 16, 641–647]. We have modified this algorithm to be guided by constraints

and to adapt to the heterogeneity of colour information in the image. Imposition of these pre-determined additional conditions enables automated

grain boundary detection without human intervention. The accuracy of CASRG has been validated through two benchmarking comparisons; one

lithology with low tectonic strain and a second with high strain are used. The CASRG measurements are compared with those from hand drawn

boundaries, which are used as a gold standard. Comparison is made using (a) a non-overlap statistic, (b) shape features, (c) strain estimates. In each

case, the CASRG method compares very favourably with the gold standard.
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1. Introduction

Strain analysis and the study of regional strain patterns are

invaluable tools in interpreting the tectonic history of a region.

However, in considering 12 recently published studies, a wide

variability in sampling density for finite strain characterisation

is demonstrated. The data in Table 1 indicates that,

independent of the size of the study area, there is an upper

limit of around 30 to the number of samples used. This results

in very low sampling densities when the study area becomes

large. There might be a number of reasons for this observation,

e.g. homogeneity of deformation in an area, availability of

suitable exposure, etc. However, we believe that the primary

reason is the laborious and time consuming methods available

for obtaining the raw data required for strain analysis.

There is one notable exception to the 30 sample limit

provided by the study of Mukul and Mitra (1998). They

analysed 119 samples of quartzite from an area of 200 km2

around the Sheeprock Thrust Sheet, Sevier Fold-and-Thrust

belt, Utah, USA. However, they employed a semi-automatic

procedure for obtaining the data for strain analysis as described

by Mukul (1998). In this paper we develop CASRG, a semi-

automatic algorithm for strain analysis that enables rapid and

accurate extraction of data for strain analysis. Automation of

this process will allow strain analysis studies to break the 30

sample limit and introduce the possibility of statistical analysis

of spatial strain variation, as in Mukul (1998). This paper

concentrates on the problem of extracting data for strain

analysis from sandstones and looks at deformed examples from

the Variscides of southwest Ireland (Meere, 1995) and the

Moine of northwest Scotland. The CASRG algorithm will yield

data that is applicable to strain analysis methods based on

marker shape (e.g. the mean radial length method of Mulchrone

et al. (2003)) and to methods based on the relative position of

markers such as those by Fry (1979) and Mulchrone (2003).

Traditional methods of measurement required sustained use

of the polarising microscope with skilled manipulation of the

rotating stage and knowledge of the use of various graticules

(Ramsay, 1967, section 5.2). With the proliferation of digital

cameras, it is now common place to obtain digital images of a

field of view as seen through the microscope (Fig. 1a). Digital

images are easily manipulated by computer graphic software
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packages that allow the outline of clast boundaries to be easily

traced. Alternatively the boundaries may be manually traced

from a printout and then scanned into a digital image (i.e. as

suggested by Mukul (1998) and Mulchrone et al. (in review)).

Given a set of such boundaries, it is possible to make the

measurements required for strain analysis either manually or

using automated methods (Mulchrone et al., in review).

Although methods that require manual identification of

boundaries represent a striking improvement on totally manual

methods for data extraction, there is room for further

improvement. The primary aim of automatic clast boundary

detection is to remove the manual step of marking boundaries.

The task is especially onerous if one is engaged in a strain

mapping study, where thousands of clasts have to be marked for

reliable measurements of strain. Concomitantly, one is also

seeking increased speed and accuracy in making strain

measurements (Meere and Mulchrone, 2003). Speed is guaran-

teed not so much by the efficiency of the algorithm itself, as by the

increase in processing power of computers. The issue of accuracy

is of course paramount in any scientific endeavour. Given the

nature of the current problem, clasts will always exist where

manual marking of boundaries will be better than any automatic

identification algorithm. In fact, given time, patience and

practice, manual marking will be at least as good as the best

automatic clast boundary detection algorithm. In practice,

however, lack of dexterity with the mouse or pen can cause

manually identified boundaries to deviate from the true boundary

of the clast. In most cases, these errors will be negligible in terms

of the accuracy of measurements made on the clast. Therefore, the

aim is to develop a method that will deliver parameter estimates

which are close (in an average sense) to those obtained by careful

manual marking.

Previous work on automated clast boundary detection (e.g.

Heilbronner, 2000; Ailleres et al., 1995; Bartozzi et al., 2000),

demonstrates the difficulty of the problem. These papers address

the difficulty by introducing extra information about the grain

boundaries: for example Heilbronner (2000) has utilised multiple

images of the same field of view and Bartozzi et al. (2000) use

SEM images. Automatic clast boundary identification from a

single image is an even harder problem. Clasts will be adjacent to

each other and appear to be the same colour (e.g. in Fig. 1b, clasts

10 and 11). It will be very difficult to tell these apart. Fortunately,

for strain measurement, we do not have to measure all clasts, but

only enough for an accurate strain analysis (around 150 according

to Meere and Mulchrone (2003)). In any given thin section image,

there will be some clasts that appear well defined due to a sharp

colour contrast with their immediate neighbourhood. It is the

boundaries of these clasts that we will seek to identify.

2. Region based identification

Previous work on automatic clast boundary identification

(e.g. Heilbronner, 2000; Bartozzi et al., 2000) utilise edge-

detection based methods to identify the boundary of the clasts.

Typically the initial boundaries produced by edge detection

have many imperfections (some edges occur within the clasts

as well as on the actual boundary and sometimes edges are

absent on the real boundary). These initial boundaries are then

post processed to obtain more realistic boundaries. While this

approach appears to work satisfactorily for measurements such

as clast count and clast size distribution, the subjectivity

introduced by the post processing methods make them

unsuitable for strain analysis, where crucial parameters are

commonly the physical orientation of the clast (as opposed to

Table 1

Area, number of samples and sampling density for a selection of recent studies

which included strain analysis, at least in part

Author(s) Study area

(km2)

No. Samples Samples per

km2

Meere (1995) 70 23 0.32

Srivastava et al. (1995) 2.5!10K9 4 1.6!109

Yin and Oertel (1995) 12 8 0.66

Mukul and Mitra (1998) 200 119 0.59

Roig et al. (1998) 500 8 0.02

Bresser and Walter (1999) 180 15 0.08

Althoff et al. (2000) 800 6 0.01

Hippert and Davis (2000) 12 9 0.75

Hippert and Davis (2000) 18 3 0.16

Hippert and Davis (2000) 4 6 1.50

Simancas et al. (2000) 60 28 0.46

González-Casado and

Garcı́a-Cuevas (2002)

2000 37 0.02

Mulchrone (2002) 55 18 0.33

Bailey and Eyster (2003) 14 8 0.57

Fig. 1. (a) Original microphotograph. (b) Hand drawn boundaries.
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