
An index to represent lateral variation of the confidence of experts in a
3-D geological model

R.M. Lark *, S.J. Mathers, A. Marchant, A. Hulbert

British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom

1. Introduction

Geologists understand the geology of a region in three
dimensions, and recent technological developments allow them
to represent this understanding in 3-D geological models.
Geological information in the form of 3-D models, rather than
traditional 2-D maps, is now the state of the art for planning and
decision making (Mathers and Kessler, 2010; Royse et al., 2010).

All geological information is subject to uncertainty, since at
most sites in a region information is inferred indirectly from
observations at other locations, observations which may them-
selves be subject to error. As a result the final model has an
inevitable uncertainty. This is of interest because the model may
be interpreted as indicating the subsurface positions of particular
features or the volumes of particular units over a specified region.
Engineering decisions such as the route of a tunnel or the
suitability of the subsurface for particular structures should be
robust given the model errors that may be expected. Similarly, if
the model is used in resource assessment or in hydrogeological
modelling then the user requires some understanding of
the model’s uncertainty, and how this might vary in space. For
this reason the problem of how to measure and represent

model uncertainty is the subject of some considerable research
interest.

Where 3-D structure is predicted from observations by purely
geostatistical methods a measure of uncertainty is computed
directly for individual predictions (Lark and Webster, 2006;
Blanchin and Chilès, 1993). However, most models are not
generated by a statistical algorithm but rather through expert
interpretation; either expert ‘manual’ editing of surfaces produced
by mechanical interpolation, or by interpolation from cross
sections interpreted by the modeller, subject to constraints (e.g.
2-D coverages for particular units) imposed by the modeller as in
the GSI3D software (Kessler et al., 2009; Mathers et al., 2011).

Lark et al. (2013) report a post hoc evaluation of uncertainty in a
model produced in GSI3D by a designed experiment in which a
team of modellers studied a common region. However, this
approach is resource-intensive and not suitable for conditions
where borehole data are sparse. It can be used to obtain benchmark
statistics on model quality for particular geological terrains and
settings, but is not suitable as a routine approach to quantify
uncertainty in particular models.

Lelliott et al. (2009) propose a structured approach to represent
the uncertainty in 3-D models. This was based on an initial analysis
of factors that contribute to the uncertainty of a model in a specific
geological setting produced with the GSI3D software. The factors
identified include the reliability of the absolute elevations of the
boreholes, the quality of the borehole logging, the drilling method,
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A B S T R A C T

A Confidence Index is proposed that expresses the confidence of experts in the quality of a 3-D model as a

representation of the subsurface at particular locations. The Confidence Index is based on the notion that

the variation of the height of a particular geological surface represents general geological variability and

local variability. The general variability comprises simple trends which allow the modeller to project

surface structure at locations remote from direct observations. The local variability limits the extent to

which borehole observations constrain inferences which the modeller can make concerning local

fluctuations around the broad trends. The general and local geological variability of particular contacts

are modelled in terms of simple trend surfaces and variogram models. These are then used to extend

measures of confidence that reflect expert opinion so as to assign a confidence value to any location

where a particular contact is represented in a model. The index is illustrated with an example from the

East Midlands region of the United Kingdom.
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the geological complexity and the density of data. Any borehole
may be given some index which reflects the quality of information
it provides according to the above-listed constraints (e.g. under
drilling method the quality of information was deemed best for
cores obtained by sonic drilling and poorest for those obtained by
cable percussion). The combination of information on the different
sources of uncertainty into a single index was done by a machine-
learning algorithm; this uses the various sources of information on
model uncertainty as predictors of the expert score provided at a
few calibration sites.

The present paper describes an index of confidence similar to
that proposed by Lelliott et al. (2009). It differs from the previous
measure in certain respects. It is designed specifically for models of
subsurface structure inferred from subsurface observations (bore-
holes, seismic lines) rather than by projection from surface
structure. We are concerned, therefore, with cases where the
expert may make inferences about the height of a contact at some
unobserved site by identifying a trend in the height of the same
contact shown in boreholes or interpreted seismic data at other
locations. We consider two general constraints on the model that
the expert will form. The first is the overall geological complexity;
this source of uncertainty will be small if there is strong evidence
for relatively simple trends in surface heights, as may arise from a
consistent dip or a dip with flexure. Lelliott et al. (2009) measure
geological complexity by multiple fitting of a trend surface model
to subsets of available data, which gives a measure of complexity in
more general cases than ours but also risks confounding
complexity as a source of uncertainty with data density since
the multiple refitted surface will be more variable in areas where
data are sparse, and less variable where the observations are
strongly clustered in space. The second constraint on the model is
local geological complexity which is, essentially, the variability of
surface height about the overall trend. In our index the effect of this
source of uncertainty depends on the proximity of local observa-
tions, such that the confidence in the model decays with distance
from a borehole. By this simple partition of the sources of
uncertainty in a model we are able to compute directly a simple
Confidence Index which is interpretable in terms of a scale used to
elicit information from geological experts and which varies in ways
which are directly interpretable in terms of the distribution of
borehole and other data and the distribution of faults. In this way
the Confidence Index is entirely transparent.

In the remainder of this paper we describe the general form of
our proposed Confidence Index, and the methods required to
compute it. We then present a case study in which the index is
computed for a model of some subsurface contacts in a part of the
East Midlands of England.

2. The Confidence Index

2.1. General principles

The key idea implemented in the Confidence Index is that the
confidence in the modelled surface is influenced by overall
geological variability (the extent to which pronounced simple
trends in the elevation of particular surfaces allow the modeller to
project with some confidence beyond the range of data) and local
geological complexity, which determines over what distance
information in a borehole constrains the interpretation of local
fluctuations around an overall trend. In order to implement the
Confidence Index we use data on the elevation of the modelled
surfaces of interest, either from boreholes or geophysical data.
These data are then analyzed to partition the observed variation in
elevation of each surface into a simple trend (a polynomial of
degree 1 or 2 in the 2-D coordinates) and fluctuation about the
trend. The latter is treated as a Gaussian random variable which

may be spatially correlated, that is to say the observed deviations
from the trend model at two locations are more likely to be similar
if the locations are close together than if they are far apart. The
correlation between the deviations from the trend at any two
locations declines with the distance between them to zero, which
is either reached or asymptotically approached at a distance called
the range of autocorrelation. The autocorrelation is modelled as a
function of distance by a suitable mathematical expression. As
described in more detail below the proportion of the variation in
observed heights which is described by the trend component of the
model characterizes the overall complexity of the modelled
surface, and the dependence of the autocorrelation function for
the deviations from the trend characterizes the local geological
variability. The rationale for this is that if the distance to the
nearest borehole from some location, x, is longer than the range of
autocorrelation of the variations of a surface about the general
trend, then that borehole provides no direct information on the
local geological variability at x.

Consider four contrasting locations in a modelled area.
A. The first is a location that coincides with a logged borehole used

to produce the model. It is assumed that the borehole data are of
good quality, and are reliably coded. At this location there is
complete confidence in the model, because it is directly
supported by an observation and the Confidence Index is
allocated a maximum value, a1. One might, however, identify
among all the boreholes in a region subsets which command
different degrees of confidence because of factors such as age,
logging quality, drilling method, etc. In these circumstances one
may elicit from geologists with local knowledge and experience,
which includes experience of the borehole sets, values of the
Confidence Index at sites that coincide with the different
borehole subsets. These values may be denoted a2, a3 . . . all less
than a1.

B. The second location is one that coincides not with a borehole
but with a point on a seismic line or some other geophysical
measurement which provides information used in the model.
Here the confidence in the model is enhanced by the extent to
which the observation constrains the modelled surface, but it is
likely that the value of the Confidence Index at such a location
should be less than at a borehole location. That is because the
depth of a contact at a location on a seismic line is inferred
mathematically on the basis of assumptions about the seismic
velocity of the units in the stack. This is an additional source of
uncertainty. Once again it would be necessary to elicit from
experts, with experience of geophysical measurement in the
particular geological setting, a value for the Confidence Index
relative to the maximum value a1 for the best-quality borehole
data. We denote this value by b, but recognize that it might be
necessary to elicit more than one value for different subsets of
geophysical data.

C. The third situation is a location some distance from any direct
observation such that the observations only constrain the model
at the location through any general trends in the height of the
surfaces of interest that are identified in the data as a whole. The
confidence in the model will be at a minimum at such a location,
the question is what value should be ascribed to the Confidence
Index in such circumstances. There are two general cases here.
C.i In the first, the depth of the surface of interest shows no

large-scale structure (dip or similar trend) across the
modelled region, but is influenced by fine-scale fluctuations
around a constant mean depth. Such variation is not readily
predictable by the modeller.

C.ii In the second, there is some long-range structure, such as a
gentle dip across all or much of the region, which is not
markedly affected by faulting. This broad-scale structure is
predictable by the modeller, it represents the kinds of
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