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1. Introduction

Let U be a selfadjoint operator on the complex Hilbert space (H, (., .)) with the spectrum Sp(U) included in the interval
[m, M] for some real numbers m < M and let {E; }, be its spectral family. Then for any continuous function f : [m, M] — C,
it is well known that we have the following spectral representation in terms of the Riemann-Stieltjes integral:
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which in terms of vectors can be written as

M
FWUx.y) = / f ) d(Ex, ), (1.2)
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for any x, y € H. The function gy , (1) := (E,X, y) is of bounded variation on the interval [m, M] and
&y(m—0)=0 and g,M)=(xy)

for any x, y € H. It is also well known that g, (1) := (E; x, x) is monotonic nondecreasing and right continuous on [m, M].

For a recent monograph devoted to various inequalities for continuous functions of selfadjoint operators, see [1] and the
references therein.

For other recent results, see [2-12].
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The following result provides a Taylor type representation for a function of selfadjoint operators in Hilbert spaces with
an integral remainder:

Theorem 1 (Dragomir, 2010, [13]). Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) C [m, M] for
some real numbers m < M, {E; },. be its spectral family, I be a closed subinterval on R with [m, M] C I (the interior of I) and let
n be an integer withn > 1.If f : I — C is such that the nth derivative f™ is of bounded variation on the interval [m, M], then
for any ¢ € [m, M] we have the equalities
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where

Ra(f,c,m,M) = f </ r=0" d(f“‘)(t))) dE;. (1.4)

This representation provides the following vectorial error bounds.

Theorem 2 (Dragomir, 2010, [13]). Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) C [m, M] for
some real numbers m < M, {E, }, be its spectral family, I be a closed subinterval on R with [m, M] C I (the interior of I) and let
n be an integer withn > 1.If f : I — C is such that the nth derivative f™ is of bounded variation on the interval [m, M], then
for any ¢ € [m, M] we have the inequality
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foranyx,y € H.

For other error bounds in the case when the nth derivative f™ is Lipschitzian and some applications for particular
functions including the exponential and logarithmic function see [13].

As one can see, by choosing in (1.5) eitherc = m,c = Morc = '"*M , that one can obtain some Taylor like expansions
in terms of the function and the derivative values in that specific pomt The error estimation is best when c is taken in the
middle of the interval [m, M] where the spectrum of the operator is located.

In this paper, however we develop a Taylor type expansion in terms of the function and the derivative values in both
extremal points m and M. Applications for some elementary functions of interest including the logarithmic and exponential
functions are also provided.

2. Representation results

We start with the following identity that has been obtained in [14]. For the sake of completeness we give here a short
proof as well.

Lemma 1. Let I be a closed subinterval on R, let a, b € I with a < b and let n be a nonnegative integer. If f : | — R s such that
the nth derivative f™ is of bounded variation on the interval [a, b], then, for any x € [a, b] we have the representation
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where the kernel S, : [a, b]> — R is given by
x—=6)"(b—x) fa<t=<x
Sn(X t) {( ])n+l(t X)ﬂ(x _ (1) le <t S b (22)

and the integral in the remainder is taken in the Riemann-Stieltjes sense.
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