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a b s t r a c t

We prove necessary optimality conditions, in the class of continuous functions, for
variational problems defined with Jumarie’s modified Riemann–Liouville derivative. The
fractional basic problem of the calculus of variations with free boundary conditions is
considered, as well as problems with isoperimetric and holonomic constraints.
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1. Introduction

There exists a vast literature on different definitions of fractional derivatives. The most popular ones are the
Riemann–Liouville and the Caputo derivatives. Each fractional derivative presents some advantages and disadvantages (see,
e.g., [1–3]). The Riemann–Liouville derivative of a constant is not zero while Caputo’s derivative of a constant is zero but
demands higher conditions of regularity for differentiability: to compute the fractional derivative of a function in the Caputo
sense, we must first calculate its derivative. Caputo derivatives are defined only for differentiable functions while functions
that have no first order derivative might have fractional derivatives of all orders less than one in the Riemann–Liouville
sense [4].

Recently, Guy Jumarie (see [5–11]) proposed a simple alternative definition to the Riemann–Liouville derivative. His
modified Riemann–Liouville derivative has the advantages of both the standard Riemann–Liouville and Caputo fractional
derivatives: it is defined for arbitrary continuous (nondifferentiable) functions and the fractional derivative of a constant is
equal to zero. Herewe show that Jumarie’s derivative ismore advantageous for a general theory of the calculus of variations.

The fractional calculus of variations is a recent research area much in progress. It is being mainly developed for
Riemann–Liouville (see, e.g., [12–17]) and Caputo derivatives (see, e.g., [18–23]). For more on the calculus of variations,
in terms of other fractional derivatives, we refer the reader to [24–28] and references therein.

As pointed out in [29], the fractional calculus of variations in Riemann–Liouville sense, as it is known, has some problems,
and results should be used with care. Indeed, in order for the Riemann–Liouville derivatives aDα

x y(x) and xDα
b y(x) to be

continuous on a closed interval [a, b], the boundary conditions y(a) = 0 and y(b) = 0 must be satisfied [4]. This is
very restrictive when working with variational problems of minimizing or maximizing functionals subject to arbitrarily
given boundary conditions, as often done in the calculus of variations (see Proposition 1 and Remark 2 of [14]). With
Jumarie’s fractional derivative this situation does not occur, and one can consider general boundary conditions y(a) = ya
and y(b) = yb.
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The paper is organized as follows. In Section 2 we state the assumptions, notations, and the results of the literature
needed in the sequel. Section 3 reviews Jumarie’s fractional Euler–Lagrange equations [30]. Our contribution is then given
in Section 4: in Section 4.1 we consider the case when no boundary conditions are imposed on the problem, and we
prove associated transversality (natural boundary) conditions; optimization with constraints (integral or not) are studied
in Sections 4.2 and 4.3. Finally, in Section 5 we explain the novelties of our results with respect to previous results in the
literature.

2. Preliminaries on Jumarie’s Riemann–Liouville derivative

Throughout the text f : [0, 1] → R is a continuous function andα a real number on the interval (0, 1). Jumarie’smodified
Riemann–Liouville fractional derivative is defined by

f (α)(x) =
1

Γ (1 − α)

d
dx

∫ x

0
(x − t)−α(f (t) − f (0)) dt.

If f (0) = 0, then f (α) is equal to the Riemann–Liouville fractional derivative of f of order α. We remark that the fractional
derivative of a constant is zero, as desired.Moreover, f (0) = 0 is no longer a necessary condition for the fractional derivative
of f to be continuous on [0, 1].

The (dt)α integral of f is defined as follows:∫ x

0
f (t)(dt)α = α

∫ x

0
(x − t)α−1f (t)dt.

For a motivation of this definition, we refer to [5].

Remark 2.1. This type of fractional derivative and integral has found applications in some physical phenomena. The
definition of the fractional derivative via difference reads

f (α)(x) = lim
h↓0

∆α f (x)
hα

, 0 < α < 1,

and obviously this contributes some questions on the sign of h, as it is emphasized by the fractional Rolle’s formula
f (x + h) ∼= f (x) + hα f (α)(x). In a first approach, in a realm of physics, when h denotes time, then this feature could picture
the irreversibility of time. The fractional derivative is quite suitable to describe dynamics evolving in space which exhibit
coarse-grained phenomenon. When the point in this space is not infinitely thin but rather a thickness, then it would be
better to replace dx by (dx)α, 0 < α < 1, where α characterizes the grade of the phenomenon. The fractal feature of the
space is transported on time, and so both space and time are fractal. Thus, the increment of time of the dynamics of the
system is not dx but (dx)α . For more on the subject see, e.g., [10,30–33].

Our results make use of the formula of integration by parts for the (dx)α integral. This formula follows from the fractional
Leibniz rule and the fractional Barrow’s formula.

Theorem 2.2 (Fractional Leibniz Rule [34]). If f and g are two continuous functions on [0, 1], then

(f (x)g(x))(α)
= (f (x))(α)g(x) + f (x)(g(x))(α). (1)

Kolwankar obtained the same formula (1) by using an approach on Cantor space [35].

Theorem 2.3 (Fractional Barrow’s Formula [8]). For a continuous function f , we have∫ x

0
f (α)(t)(dt)(α)

= α!(f (x) − f (0)),

where α! = Γ (1 + α).

From Theorems 2.2 and 2.3 we deduce the following formula of integration by parts:∫ 1

0
u(α)(x)v(x) (dx)α =

∫ 1

0
(u(x)v(x))(α) (dx)α −

∫ 1

0
u(x)v(α)(x) (dx)α

= α![u(x)v(x)]10 −

∫ 1

0
u(x)v(α)(x) (dx)α.

It has been proved that the fractional Taylor series holds for nondifferentiable functions. See, for instance, [36]. Another
approach is to check that this formula holds for the Mittag-Leffler function, and then to consider functions which can be
approximated by the former. The first term of this series is Rolle’s fractional formula which has been obtained by Kolwankar
and Jumarie and provides the equality dαx(t) = α!dx(t).

It is a simple exercise to verify that the fundamental lemma of the calculus of variations is valid for the (dx)α integral
(see, e.g., [37] for a standard proof):
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