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ARTICLE INFO ABSTRACT
ﬁé’l‘\’ﬂvgrd&' This study analyzes the chaotic behavior of a micromechanical resonator with electrostatic

forces on both sides and investigates the control of chaos. A phase portrait, maximum
Lyapunov exponent and bifurcation diagram are used to find the chaotic dynamics of
this micro-electro-mechanical system (MEMS). To suppress chaotic motion, a robust fuzzy
sliding mode controller (FSMC) is designed to turn the chaotic motion into a periodic
motion even when the MEMS has system uncertainties.
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1. Introduction

Nonlinearities exist ubiquitously in micro-electro-mechanical systems (MEMS). Examples include nonlinear springs and
damping mechanisms [1], nonlinear resistive, inductive and capacitive circuit elements [2] and nonlinear surface, fluid,
electric and magnetic forces [3]. Many researches have been conducted on various nonlinear dynamic phenomena, including
bending of the frequency response curve and the jump phenomenon in MEMS resonators [4]. Nonlinearities may also cause
chaotic behavior [5]. Modeling [6] has been used to predict the existence of chaotic motion in electrostatic MEMS. In one
study [7], the chaotic motion of MEMS resonant systems close to the specific resonant separatrix was investigated under the
corresponding resonant condition. An optimal linear feedback control strategy has been adopted [8] to reduce the chaotic
motion of the system proposed in the former study [7] to a stable orbit. In a later investigation [9], the chaotic behavior of a
micro-electro-mechanical oscillator was modeled by a version of the Mathieu equation and was studied both numerically
and experimentally. Chaotic motion of a micro-electro-mechanical cantilever beam under both open and close loop control
has also been reported [10].

This study develops a fuzzy sliding mode control (FSMC) scheme [11-13] that is designed to control chaos in a MEMS with
system uncertainties. Firstly, the switching surface that is required to achieve chaos control is specified, and then a switching
control law based on fuzzy linguistic rules is developed to generate a suitable chatter-free control signal for driving the error
dynamic system such that the error state trajectories converge asymptotically to zero.

2. System description

Fig. 1 presents the electrostatically actuated micro-beam, where d is the initial width of the gap and z is the vertical
displacement of the beam. An external driving force is applied as an electrical driving voltage on the resonator that causes
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Fig. 2. The bifurcation diagram obtained by varying AC voltage Vac from 0 to 0.4 V.
electrostatic excitation with a dc bias voltage between the electrodes and the resonator: V; = Vj, + Vjc - sin §2t, where Vj, is

the bias voltage and V¢ and £2 are the AC amplitude and frequency, respectively. The amplitude of the AC driving voltage
is assumed to be much lower than the bias voltage, yielding the nondimensional equation of motion [14]:
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where the nondimensional variables x and w are defined as
z 2 Vac
X=-, wo=—, A=2y—,
d N Vp
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where wy is the purely elastic natural frequency. Given the statesx; = x, x, = xand g(x) = y (W - ﬁ

), this system
can be transformed into the following nominal form:

X1 =X
. 3 A , (2)
Xy = —axy — Bx] — uxy + g(x1) + ———— sinwrt.

(1—x1)?

This MEMS (2) exhibits complex dynamics and has been studied by Haghighi and Markazi [14] for values of V¢ in the
range 0 < Vac < 0.47 and constant valuesof e = 1, 8 = 12, ¥y = 0.338, u = 0.01, V, = 3.8 and w = 0.5. Fig. 2 displays
its bifurcation diagram. In this case, the qualitative behavior of the system is shown against a varying AC voltage from 0 to
0.4. When the AC voltage is increased from zero, periodic motion occurs around one of the center points. Fig. 3 presents the
irregular motion that is exhibited by this system at V4c = 0.2 V under initial conditions of (x;, x,) = (0, 0). Fig. 3(b) reveals
that the corresponding maximum Lyapunov exponent has a positive value, and so the MEMS trajectory is inferred to be in
a state of chaotic motion at Vac = 0.2 V. The following section examines the problem of the suppression of chaos of MEMS
and introduces the FSMC to cope with this chaotic motion.

3. Robust fuzzy sliding mode control

Consider a chaotic MEMS of the form

)'(1 = X2

. A .
Xy = —axy — Bx3 — uxa + g(x1) + m sinwt + Af (x1, X2) + u,
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