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a b s t r a c t

This paper investigates the effects of control strength on nonlinearly coupled systems in the
process of synchronization, where the coupling strength is an invariable constant. Under
the assumption of an asymmetric and reducible couplingmatrix, two comparable sufficient
conditions are obtained by using the Lyapunov directmethod.Moreover, a rough bound for
the control strength is presented. A simple simulation is also given to show the validity of
the theorems. This work improves the current results that we have.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Pinning control, as a feasible strategy, could drive networks of coupled oscillators onto some desired trajectory. Generally
speaking, we apply pinning control by adding a feedback control input on a fraction of a networks nodes. Though we just
exert the direct control on such pinned nodes, it can be propagated to the rest of the oscillators through the coupling among
the nodes.

Studying local pinning controllability of a complex, in fact, is equivalent to analyzing the local synchronization of such a
network [1], whose methods mainly depend on the master stability function (MSF) [2]. On the basis of [1], a similar method
has been applied to the local pinning controllability of a discrete-time case [3].

In the real world, the networks are large-scale or even huge-scale ones i.e. social networks, the Internet network, electric
power grid networks, neutral networks, and so on. Therefore, the local synchronization cannot meet our needs, commonly.
But, mathematically, the aim of studying local synchronization is to find out about and deal with global and exponential
synchronization more easily and deeply. Naturally, we will try to extend the results of the MSF method to global network
pinning controllability [4,5]. It proves that global exponential synchronization of error dynamics could be realized through
the common Lyapunov stability theory, when the uncoupled function f (·) ∈ QUAD(∆, P, η). Many chaotic systems, such as
the Chen chaotic system, the Lü system, the unified chaotic system, and so on, all satisfy this, although the conditions seem
rather strict. Hence, this should be endowed with significant mathematical meaning. In [4,5], two adaptive pinning control
methods were used to analyze the synchronization of augmented systems.

As for pinning controllability of complex networks, the current works can be roughly sorted into the following groupings.
First, pinning synchronization of delayed dynamical networks was discussed in [6,7]. [6] takes advantage of a periodically
intermittent control strategy and [7] makes a neural network have imposed control. Next, the optimization and robustness
of pinning controlwere probed in [8]. And then, other appliedmethods like impulsive controlwere used in [9]. Also, discrete-
time complex networks were also discussed in [9], etc. Finally, global synchronization of fractional-order complex networks
was considered in [10] by means of eigenvalue analysis and fractional-order stability theory.

Generally, previous works require the coupling strength c to be large so that the global synchronization of complex
networks can be realized. However, there exists a drawback as c becomes larger. This equivalently makes all weights larger
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simultaneously. This must raise the synchronization cost. In this paper, we show that, as a parameter, ϵ(t) > 0 can be used
to complete the task with a lower cost.

2. Preliminaries and model description

Suppose that the nonlinearly coupled network is

dxi(t)
dt

= f (xi(t), t) + c
m−
j=1

aijg(xj(t)), i = 1, . . . ,m, (1)

where xi(t) = [x1i (t), . . . , x
m
i (t)]T ∈ Rn is the state variable of the ith node, t ∈ [0, +∞) is the continuous time,

f : Rn
× [0, +∞) → Rn is a continuous map, g(·) is some nonlinear function reflecting the nonlinear coupling relationship

between those nodes and satisfying that 0 < β ≤ (g(u)−g(v))/(u−v) for any u ≠ v ∈ R, A = (aij)m×m is the corresponding
coupling matrix that satisfies aij ≥ 0 (i ≠ j), denoting the coupling coefficients, and aii = −

∑m
j=1,j≠i aij for i, j = 1, . . . ,m,

and c is the coupling strength and will be fixed in this paper.
Suppose s(t) is a solution for the uncoupled system, that is

ṡ(t) = f (s(t), t). (2)
We will prove that the coupled network with a single controller shown in (3) can pin the complex dynamical network

(1) to s(t):
dx1(t)
dt

= f (x1(t), t) + c
m−
j=1

a1jg(xj(t)) − cϵ(t)(g(x1(t)) − g(s(t)))

dxi(t)
dt

= f (xi(t), t) + c
m−
j=1

aijg(xj(t)), i = 2, . . . ,m

(3)

where ϵ(t) > 0 and ϵ̇(t) =
∑m1

i=1 δxTi (t)Pδxi(t).
Define δxi(t) = xi(t) − s(t) and δg(xi(t)) = g(xi(t)) − g(s(t)); then the system (3) can be shown as

δdxi(t)
dt

= f (xi(t), t) − f (s(t), t) + c
m−
j=1

ãijδg(xj(t)), i = 1, . . . ,m, (4)

where ã11 = a11 − ϵ(t) and ãij = aij otherwise.
Now, we introduce some definitions, assumptions, and lemmas that will be required throughout the paper.

Assumption 1. Assume that the coupling matrix A is symmetric and reducible, and has the following Perron–Frobenius
normal form:

A =


A11 0 · · · 0
A21 A22 · · · 0
...

. . .
...

...
Ap1 Ap2 · · · App

 (5)

where Aii ∈ Rmi×mi are irreducible, Aij ≠ 0 (i > j) andm1 + m2 + · · · + mp = m. Without loss of generality, we take p = 2.

Definition 1 ([11]). The function f (·) ∈ QUAD(P, ∆, η) if there exists a positive definite diagonal matrix P = diag(p1, . . . ,
pn), a diagonal matrix ∆ = diag(∆1, . . . , ∆n) and a scalar η > 0 such that

(x − y)TP(f (x) − f (y) − 1x + 1y) ≤ −η(x − y)T (x − y)

holds for any x, y ∈ Rn.

Lemma 1 ([12]). Suppose the coupling matrix A has the form (5); then:
1. 1 = (1, . . . , 1)T is the right eigenvector of A corresponding to eigenvalue 0 with multiplicity 1, and the real parts of other

eigenvalues are negative;
2. the left eigenvector ξ of A corresponding to eigenvalue 0 has the following properties: ξ = (ξ̂ T , 0, . . . , 0)T , where ξ̂ =

(ξ1, . . . , ξm1)
T > 0 with

∑m1
i=1 ξi = α; for convenience, we write Ξ = diag{ξ1, . . . , ξm1}.

Lemma 2 ([13]). Suppose that the matrix A = (aij)n×n satisfies aij = aji ≥ 0 (i ≠ j), and aii = −
∑n

j=1,j≠i aij, i, j = 1, . . . , n.
Then for any two vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , we have

xTAy = −

−
j>i

aij(xj − xi)(yj − yi).
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