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By using a continuation theorem based on coincidence degree theory, we obtain some new
sufficient conditions for the existence of positive periodic solutions for the neutral ratio-
dependent predator–prey model with Holling type II functional response.
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1. Introduction

The dynamic relationship between predator and its prey has long been and will continue to be one of the dominant
themes in both ecology and mathematical ecology due to its universal existence and importance. The traditional
predator–prey models have been studied extensively (See, for example, [1–4] and references cited therein).

Recently, there is a growing explicit biological and physiological evidences that a more suitable general predator–prey
theory should be based on the so-called ratio-dependent theory. This is strongly supported by numerous field and laboratory
experiments and observations. Based on theMichaelis–Menten or Holling type II function, Arditi and Ginzburg [5] proposed
the ratio-dependent predator–prey model. Subsequently, many authors [5,6] have observed that the system exhibits much
richer, more complicated, and more reasonable or acceptable dynamics. Beretta and Kuang [6] introduced a single discrete
time delay into the predator equation in the foregoing model. In view of the periodicity of the actual environment, Fan
andWang [7] established verifiable criteria for the global existence of positive periodic solutions of a more general delayed
ratio-dependent predator–prey model with periodic coefficients. Kuang [8] studied the local stability and oscillation of the
following neutral delay Gause-type predator–prey system.

In this paper, motivated by the abovework, we shall consider the following neutral delay ratio-dependent predator–prey
model with Holling type II functional response

x′(t) = x(t)[a(t) − bx(t − σ1) − ρx′(t − σ2)] −
c(t)x(t)y(t)
my(t) + x(t)

,

y′(t) = y(t)
[
−d(t) +

f (t)x(t − τ)

my(t − τ) + x(t − τ)

]
.

(1.1)

As pointed out by Kuang [9], it would be of interest to study the existence of periodic solutions for periodic systems with
time delay. To our knowledge, no such work has been done on the global existence of positive periodic solutions of (1.1).
Our aim in this paper is, by using the coincidence degree theory developed by Gaines and Mawhin [10], to derive a set of
easily verifiable sufficient conditions for the existence of positive periodic solutions of system (1.1).

✩ This work is supported by the National Sciences Foundation of China (11071283), the Sciences Foundation of Shanxi (2009011005-3) and the Major
Subject Foundation of Shanxi (20091028).
∗ Corresponding author.

E-mail addresses: zhafq@263.net (F. Zhang), chongyang1894@163.com (C. Zheng).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.09.021

http://dx.doi.org/10.1016/j.camwa.2010.09.021
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:zhafq@263.net
mailto:chongyang1894@163.com
http://dx.doi.org/10.1016/j.camwa.2010.09.021


2222 F. Zhang, C. Zheng / Computers and Mathematics with Applications 61 (2011) 2221–2226

For convenience, we will use the notations: |r|0 = maxt∈[0,ω]{|r(t)|}, r̄ =
1
ω

 ω

0 r(t)dt, r̂ =
1
ω

 ω

0 |r(t)|dt, where r(t) is
a continuous ω-periodic function.

In this paper, we make the following assumptions for system (1.1).

(H1) m, b, ρ ∈ (0, ∞); σ1, σ2, τ ∈ R; a ∈ C(R, R), c, d, f ∈ C(R, [0, +∞)) are ω-periodic functions; ā > 0, d̄ > 0, f̄ > 0.
(H2) ρeB < 1 , where B = ln A + A + (â + ā)ω and A =

(1+ρ)ā
b .

(H3) c̄ < mā.
(H4) d̄ < f̄ .

2. Existence of positive periodic solution

In this section, we shall study the existence of at least one positive periodic solution of system (1.1). The method to be
used in this paper involves the applications of the continuation theoremof coincidence degree. For the readers’ convenience,
we first introduce a few concepts and results about the coincidence degree.

Let X, Z be real Banach spaces, L : Dom L ⊂ X → Z be a linear mapping, and N : X → Z be a continuous mapping.
The mapping L is said to be a Fredholm mapping of index zero, if dimKer L = codimIm L < +∞ and Im L is closed in Z .
If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → X and Q : Z → Z , such that
Im P = Ker L,KerQ = Im L = Im (I − Q ). It follows that the restriction LP of L to Dom L ∩ Ker P : (I − P)X → Im L is
invertible. Denote the inverse of LP by KP . The mapping N is said to be L-compact on Ω , if Ω is an open bounded subset of
X , QN(Ω) is bounded and KP(I − Q )N : Ω → X is compact. Since ImQ is isomorphic to Ker L, there exists an isomorphism
J : ImQ → Ker L.

Lemma 2.1 (Continuation Theorem [10, p. 40]). Let Ω ⊂ X be an open bounded set, L be a Fredholm mapping of index zero and
N be L-compact on Ω . Suppose (i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ Dom L, Lx ≠ λNx; (ii) for each x ∈ ∂Ω ∩ Ker L,QNx ≠

0; (iii) deg{ JQN, Ω ∩ Ker L, 0} ≠ 0. Then Lx = Nx has at least one solution in Ω ∩ Dom L.

Lemma 2.2. Assume that h(t), g(t) are continuous and nonnegative functions defined on the interval [α, β]. Then there exists
ξ ∈ [α, β] such that

 β

α
h(t)g(t)dt = h(ξ)

 β

α
g(t)dt.

We are now in a position to state and prove our main result.

Theorem 2.1. Assume that (H1)–(H4) hold. Then system (1.1) has at least one ω-periodic solution with strictly positive
components.

Proof. Consider the following system:
u1

′(t) = a(t) − beu1(t−σ1) − ρeu1(t−σ2)u1
′(t − σ2) −

c(t)eu2(t)

meu2(t) + eu1(t)
,

u2
′(t) = −d(t) +

f (t)eu1(t−τ)

meu2(t−τ) + eu1(t−τ)
,

(2.1)

where all functions are defined as ones in system (1.1). It is easy to see that if system (2.1) has one ω-periodic solution
(u∗

1(t), u
∗

2(t))
T , then (x∗(t), y∗(t))T = (eu

∗
1(t), eu

∗
2(t))T is a positiveω-periodic solution of system (1.1). Therefore, to complete

the proof, it suffices to show that system (2.1) has at least one ω-periodic solution.
Take X = {u = (u1(t), u2(t))T ∈ C1(R, R2) : ui(t + ω) = ui(t), t ∈ R, i = 1, 2}, Z = {u = (u1(t), u2(t))T ∈ C(R, R2) :

ui(t + ω) = ui(t), t ∈ R, i = 1, 2} and denote |u|∞ = maxt∈[0,ω]{|u1(t)| + |u2(t)|}, ‖u‖ = |u|∞ + |u′
|∞. Then X and Z

are Banach spaces when they are endowed with the norms ‖ · ‖ and | · |∞, respectively. Let L : X → Z and N : X → Z be
L(u1(t), u2(t))T = (u1

′(t), u2
′(t))T and

N
[
u1(t)
u2(t)

]
=

a(t) − beu1(t−σ1) − ρeu1(t−σ2)u1
′(t − σ2) −

c(t)eu2(t)

meu2(t) + eu1(t)

−d(t) +
f (t)eu1(t−τ)

meu2(t−τ) + eu1(t−τ)

 .

With these notations, system (2.1) can be written in the form Lu = Nu, u ∈ X . Obviously, Ker L = R2, Im L =
(u1(t), u2(t))T ∈ Z :

 ω

0 ui(t)dt = 0, i = 1, 2

is closed in Z , and dimKer L = codimIm L = 2. Therefore L is a Fredholm

mapping of index zero. Now define two projectors P : X → X , Q : Z → Z as

P
[
u1(t)
u2(t)

]
=

[
ū1
ū2

]
,

[
u1(t)
u2(t)

]
∈ X, Q

[
u1(t)
u2(t)

]
=

[
ū1
ū2

]
,

[
u1(t)
u2(t)

]
∈ Z .
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