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Abstract

The object of the present paper is to investigate some inclusion relationships and a number of other useful properties of several
subclasses of multivalent analytic functions, which are defined here by using the Dziok–Srivastava operator. Relevant connections
of the results presented here with those obtained in earlier works are pointed out.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Analytic functions; Multivalent functions; Gauss hypergeometric function; Generalized hypergeometric functions; Hadamard product
(or convolution); Dziok–Srivastava operator; Carlson–Shaffer operator; Ruscheweyh derivative; Briot–Bouquet differential subordination;
Cho–Kwon–Srivastava operator; Generalized neighborhood; Choi–Saigo–Srivastava operator

1. Introduction

Let Ap denote the class of functions normalized by

f (z) = z p
+

∞∑
k=1

cp+k z p+k (p ∈ N := {1, 2, 3, . . .}), (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

For functions f given by (1.1) and g given by

g(z) = z p
+

∞∑
k=1

dp+k z p+k,
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the Hadamard product (or convolution) of f and g is defined by

( f ? g)(z) := z p
+

∞∑
k=1

cp+kdp+k z p+k
=: (g ? f )(z).

Let the functions f and g be analytic in U. We say that the function f is subordinate to g, written as f ≺ g in U or

f (z) ≺ g(z) (z ∈ U),

if there exists a function w, analytic in U with

w(0) = 0 and |w(z)| < 1,

such that

f (z) = g(w(z)) (z ∈ U).

It follows that

f (z) ≺ g(z) (z ∈ U) H⇒ f (0) = g(0) and f (U) ⊂ g(U).

In particular, if g is univalent in U, we have the following equivalence (cf., e.g., [1,2]):

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

Furthermore, f is said to be subordinate to g in the disk

Ur := {z : z ∈ C and |z| < r},

if the function fr (z) = f (r z) is subordinate to gr (z) = g(r z) in U. Hence, if f ≺ g in U, then f ≺ g in Ur for every
r (0 < r < 1).

For complex parameters

a1, . . . , al and b1, . . . , bm (b j 6∈ Z−

0 := {0,−1,−2, . . .}; j = 1, . . . ,m),

the generalized hypergeometric function l Fm is defined (cf., e.g., [3, p. 19 et seq.]) by the following infinite series:

l Fm(a1, . . . , al; b1, . . . , bm; z) =

∞∑
k=0

(a1)k · · · (al)k

(b1)k · · · (bm)k

zk

k!

(l,m ∈ N0 := N ∪ {0}; l < m + 1 and z ∈ C; l = m + 1 and z ∈ U; l = m + 1, z ∈ ∂U, and R(ω) > 0),

where

ω :=

m∑
j=1

b j −

l∑
j=1

a j

and (λ)k is the Pochhammer symbol (or the shifted factorial) defined, in terms of the Gamma function Γ , by

(λ)k =
Γ (λ+ k)

Γ (λ)
=

{
1 (k = 0),
λ(λ+ 1) · · · (λ+ k − 1) (k ∈ N).

Dziok and Srivastava [4] considered a linear operator

Hp(a1, . . . , al; b1, . . . , bm) : Ap −→ Ap

defined by the following Hadamard product:

Hp(a1, . . . , al; b1, . . . , bm) f (z) := [z p
l Fm(a1, . . . , al; b1, . . . , bm; z)] ? f (z),

(l 5 m + 1; l,m ∈ N0; z ∈ U). (1.2)
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