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Abstract

The study is devoted to the possibilities of MTS in the case of arbitrary medium and electromagnetic-field inhomogeneity. It has been
shown that the local tensor impedance and admittance ratios between the field components are usually differential. Useful information about
the study region, with complex behavior of sounding curves, can be obtained by unconventional processing techniques, with the help of
nonlocal medium response functions (component matching). Experiments can be considerably more cost-effective if we divide the study area
into several small zones of synchronous observations and perform independent experiments in each of them at different time.
© 2012, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Researchers have long been interested in methods of
correction for distortions in magnetotelluric curves caused by
the inhomogeneity of the sounding medium. A good overview
of field distortions caused by near-surface inhomogeneities in
the medium and the influence of the surface relief as well as
ways of their elimination is given in (Jiracek, 1990). Distor-
tions are divided into two types: induction and galvanic. The
former are due to the redistribution of current, and the latter
are due to the appearance of additional electric charges in the
inhomogeneous medium. In (Singer, 1992), size estimates of
the region (normalization radius) are given within which the
influence of distant inhomegeneities on distortions of magne-
totelluric curves cannot be neglected.

The primary field is usually described as a vertically
incident wave with different polarization relative to long 2D
inhomogeneities; this suggests a TE or TM mode of excitation.
The situation becomes more complex in the case of a 3D
environment and a more complex structure of the natural
electromagnetic field (Guglielmi, 2009; Semenov, 2009).
However, there are also two modes of the field in this case,
but TE and TM are interrelated (Plotkin et al., 2008).
Three-dimensional effects in the Born approximation were

studied in (Torres-Verdín and Bostick, 1992a), and a way of
correction for them with the help of spatial-surface electric-
field filtering (electromagnetic array profiling) was described
in (Torres-Verdín and Bostick, 1992b). The present paper
analyzes another possible approach to solving this problem,
based on component matching (Plotkin, 2005).

Differential impedance and admittance ratios

Local distortions in the magnetotelluric field are usually
studied through the behavior of amplitude and phase sounding
curves, obtained by an impedance tensor. The use of the latter
is based on the Tikhonov–Cagniard model for a horizontally
layered medium excited by a vertically incident plane wave.
In general, the components of the impedance tensor depend
on the degree of field and environment inhomogeneity. This
is evident if we use differential ratios similar to impedance
ones. Indeed, excluding the vertical component of the electric
field from the Maxwell equations (the OX and OY axes lie on
the horizontal plane, and the OZ axis is vertical)
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For a plane wave vertically incident on a horizontally
layered medium, these differential ratios turn into common
tensor impedance ones. In the case of a horizontally layered
medium, they will remain the same for a field with compo-
nents showing linear lateral variation in the vicinity of the
sounding site. In general, the field components included in (2)
have to be solutions of the Maxwell equations depending on
the conductivity distribution in the entire studied volume. We
are hardly warranted in believing that ratios (2) always yield
a standard impedance tensor. Even if it is so, the above
impedance differential ratios (2) show clearly that the imped-
ance tensor components can depend considerably on the
degree and character of environment and field inhomogeneity.

In the case of an anisotropic medium, these ratios become
more complex:
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The ratios for tangential components are interrelated. Note
that the above impedance differential ratios are true of an
arbitrary inhomogeneous field in a 3D inhomogeneous anisot-
ropic medium.

Since we have used only three Maxwell equations out of
the whole set, we can, in a similar way, exclude the vertical
component of the magnetic field from the remaining equations
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and obtain corresponding admittance differential ratios, which
are also suitable in the case of a arbitrary inhomogeneous
medium and an arbitrary inhomogeneous field:
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Importantly, the impedances and admittances in the above
formulae are also determined by the vertical derivatives of the
tangential components of the electric and magnetic fields. This
is especially important for the day surface, at the boundary
with the nonconducting atmosphere. Here, an additional
condition should be met: the vertical current jz should be zero.
Under this condition, the above differential impedance ratios
(2) for an arbitrary inhomogeneous field and any medium look
like common impedance ratios for a wave vertically incident
on a horizontally layered medium. However, the vertical
derivatives of the tangential components of the electric field,
as a rule, will not coincide with the corresponding derivatives
for a wave vertically incident on a horizontally layered
medium. Also, the form of the admittance differential ratios
for the day surface does not at all depend on the condition
jz = 0. It is also unclear whether the admittance and imped-
ance tensors will be opposites of one another in the general
case of an inhomogeneous medium or field.

Component matching: a numerical experiment

Since the tensor components of impedance, admittance, and
other response functions depend not only on local conductivity
but also on the degree of environment and field inhomo-
geneity, we have to complicate the analysis of distortions in
sounding curves (Berdichevskii et al., 2009). Therefore, it is
preferable to analyze the behavior of the electromagnetic-field
components themselves. Note that the electromagnetic field in
an arbitrary volume is fully determined by the distribution of
electric- or magnetic-field tangential components on the
surface; so, we can pass from analyzing the relationship
between the field components on one site to analyzing the
relationships between the distributions of the field components
on the entire surface of the studied volume (Plotkin et al.,
2008).

Let us consider an example of sounding an inhomogeneous
medium (Fig. 1). The model consists of two inhomogeneous
low-resistivity layers submerged in a homogeneous half-space
with ρ = 1000 Ohm ⋅ m (Fig. 1, a, b):
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rs2 = 100 + 30 exp 
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