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Capacitated arc routing problems (CARP) arise in distribution or collecting problems where activities are
performed by vehicles, with limited capacity, and are continuously distributed along some pre-defined
links of a network. The CARP is defined either as an undirected problem or as a directed problem depend-
ing on whether the required links are undirected or directed. The mixed capacitated arc routing problem
(MCARP) models a more realistic scenario since it considers directed as well as undirected required links

in the associated network. We present a compact flow based model for the MCARP. Due to its large num-
ber of variables and constraints, we have created an aggregated version of the original model. Although
this model is no longer valid, we show that it provides the same linear programming bound than the
original model. Different sets of valid inequalities are also derived. The quality of the models is tested on
benchmark instances with quite promising results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Capacitated arc routing problems (CARP) arise in distribution or
collecting problems where activities are performed by vehicles, with
limited capacity, and are continuously distributed along some pre-
defined links (roads, streets) of an associated network. The CARP can
be either undirected or directed. In the undirected case, the required
links can be served in any direction. In the directed case, the required
links must be served only in the defined direction. The mixed capac-
itated arc routing problem (MCARP) models a more realistic scenario
as it accommodates simultaneously both types of links. The MCARP
is a NP-hard problem since it generalizes the CARP [19] which is
known to be NP-hard.

The research on CARP lower bounding procedures, solution and
modelling approaches performed in the last decade is surveyed by
Woehlk [30]. Many real world applications, such as household refuse
collection, winter gritting, postal distribution, metre reading, street
swiping, can be modelled either as a CARP or a MCARP. The surveys
on arc routing by Assad and Golden [3], Eiselt et al. [13,14] and Dror’s
book [11] include many references on real world problems modelled
as ARPs until the year 2000. More recent publications on arc routing
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real world applications include postal delivering by Irnich [20]; a
real situation arising on an industrial company by Moreira et al. [25]
and garbage collection, which is a main concern of municipalities
(see [2,5,10,17,24,26,27]).

The MCARP study reported in this paper is motivated by a house-
hold refuse collection problem defined in a quarter of Lisbon. Old
town quarters are usually represented by directed graphs, while new
town quarters are defined in mixed networks.

Many CARP applications differ on the features of the system
collection design, namely the number of depots and its location
([1,10,18,26], to name a few).

An approach to solve capacitated arc routing problems is by
means of well known transformations into equivalent node rout-
ing problems [29,4,22,5]. The main idea is to use available and well
tested methods for node routing problems. However, these trans-
formations lead, in general, to networks that are substantially larger
than the originals and many authors prefer to develop models on
the original graph. This is also the approach followed on this paper.

The first formulation for the CARP was proposed by Golden and
Wong [19] and includes an exponential number of constraints. It
is also stated that the exponential sized set of subtour-breaking
constraints may be replaced by a more compact set, based on flow
variables. The lower bound provided from the LP relaxation of this
formulation is known to be equal to zero (see [12]). Golden and
Wong [19] did not use the compact model to get lower bounds for
the CARP. Instead, a different lower bound method was developed
and its bound was shown to be equal to the bound obtained from
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the optimal value of a relaxation where capacity and connectivity
constraints are omitted.

A different model for the undirected CARP was proposed, in 1998,
by Belenguer and Benavent [6]. In 2003, the same authors [7] sug-
gested a different formulation for the same problem that has only a
single variable for each edge of the underlying graph, but it contains
an exponential number of constraints. This formulation is shown to
be non-valid, similarly to what happens with one of the models pre-
sented in this paper.

Later on, Belenguer et al. [8] developed a study on lower bounds
for the MCARP based on the model defined in [7]. This non-valid
model for the MCARP is similar to models presented for other mixed
arc routing problems, as the mixed Chinese postman problem [28]
and the mixed general routing problem [9]. The authors use this
model and several valid inequalities in a cutting plane fashion to get
lower bounds for the MCARP that outperformed the previous best
known bounds.

In this paper, we formulate the MCARP by a compact model, and
as far as we know, it is the first valid model for the MCARP given
in the literature that is tested on reasonable large sized instances.
We use two well known ideas to design this formulation for the
problem: (i) the concept of flows to guarantee the connectivity of the
solutions (see, for instance [15,16]) and (ii) the concept of indexing
the variables by vehicle to guarantee a matching between trips and
vehicles (see, for instance [23]). The model will be used within an
ILP package to solve medium sized problems and to produce lower
bounds on larger instances. Lower bounds are also obtained from
the corresponding linear programming relaxation.

Our model differs from the model by Golden and Wong [19] in
several aspects: (i) it formulates the mixed case while their model
was developed for the undirected CARP; (ii) the flow variables have
a different interpretation (here they are related with the demands
to be served and in their paper flows are associated with the num-
ber of edges to serve); (iii) additional constraints are included to
ensure that trips start at the depot; and (iv) extra valid inequalities
are considered to strengthen the linear programming relaxation. A
straightforward extended formulation of Golden and Wong [19] to
the mixed CARP was tested on small instances by Lacomme et al.
[21]; it also differs from ours on the above mentioned items (ii)-(iv).

Due to the vehicle indexing, the number of variables and con-
straints in our model is huge. Following the literature on the classic
vehicle routing problem (VRP), we may try to get a more compact
model, where links and flow variables are not disaggregated by
vehicle. Unfortunately, in contrast with the classic VRP, it does not
seem easy to find a similar valid model for the MCARP. However,
we will present and discuss one such aggregated model which,
although not valid, is attractive for three reasons. First, an integer
optimal solution of the aggregated model is easier to compute than
an optimal integer solution of the original model. An integer solu-
tion of the new model gives a lower bound on the optimal solution
value of the MCARP which, as our computational experiments will
show, provides competitive lower bound values for some classes
of well known MCARP instances. Second, for certain instances, the
integer lower bound value is equal to the value of a known heuristic
solution, thus certifying the optimality of this solution. Finally, we
will also prove that the linear programming relaxation values of the
two models are equal. This means that the disaggregated model can
be replaced by the non-valid model in order to produce the linear
programming bound in a much faster way (since the aggregated
model has fewer constraints and variables).

Comparing with the Belenguer and Benavent [7] formulation, the
main difference between our aggregated model and their model lies
on the network type (mixed versus undirected) and on the size of
the models since our model is compact and theirs has an exponential
number of constraints. That is, in our model capacity and connectivity

constraints are enforced by using the additional flow variables and
the constraints linking the two sets of variables. In [7] the authors
do not use the extra set of variables but use, in turn, exponential
sized sets of constraints to force connectivity.

The paper is organized as follows. In Section 2, we define the
MCARP, set notation and present the two formulations, the valid
and the non-valid formulation. We also prove that both formulations
produce the same linear programming bound and discuss valid in-
equalities. Section 3 reports the results from the computational ex-
periments on a set of known benchmark instances. The performance
of the new models is compared with existent methods. A section of
final remarks concludes the paper.

2. Formulations
2.1. Introduction

The terminology presented in this section reflects the fact that
our study is motivated by a refuse collection problem. The problem
undertaken is to plan the collection of garbage in a city with mini-
mum total cost. The street network is described by a mixed graph.
Edges characterize two way streets where zig-zag collection is al-
lowed, i.e., the vehicle can collect the garbage in both sides of the
street with a single traversal. Arcs represent either one way streets
or large two way streets with no zig-zag collection. In the later case
one arc for each direction should be included in the network. Nodes
characterize the street crossings or dead-end streets. A special node,
called depot, is the starting and ending point for the vehicle trips.
The depot is also the dumpsite, where vehicles empty the refuse
collected. A vehicle trip is a circuit that can be performed by a vehi-
cle from and back to the depot while servicing the streets (network
links), compatible with its capacity. The streets to be served, where
there is refuse to be collected, are the required links or tasks. Some
of the streets do not have refuse to be collected and they may be
traversed only to ensure the connectivity of the trips. Every street
(task or not) traversed by a vehicle without serving it is a dead-
heading link. For simplicity, it is assumed that each vehicle performs
only one trip. Capacity and number of vehicles, demands on each
street, service and deadheading costs and dump cost at depot are
known.

Consider, then, the following notation:

e I'=(N,A’ UE) is the mixed graph, with A € A’ and Eg C E the set
of required arcs and edges, respectively; and N the set of nodes,
representing street crossings, dead-end streets, or the depot.

e 0 ¢ N is the depot node where every vehicle trip must start and
end ([N|=n+1).

e G=(N,A) is a directed graph where each edge from E is replaced
by two opposite arcs, i.e., A=A U{(i,j),(j,i) : (i,j) € E}.

e R c Ais the set of required arcs in G, also named as tasks (|R| =
|AR| + 2 |Eg]).

e P is the maximum number of trips allowed.

e W is the capacity of each vehicle.

e / is the dump cost, paid every time a vehicle is emptied at the
depot.

e d;j is the deadheading cost of arc (i,j) € A.

e ¢ is the service cost of arc (i,j) € R.

e gjj is the demand of arc (i,j) € R.

e Qr is the total demand, computed as Qr = ¥ jyca,u, Jif-

The problem is to find a set of no more than P vehicle trips,
satisfying the vehicles capacity, starting and ending at the depot,
node 0, and servicing all the tasks at minimum total cost.

In the sequel LF denotes the linear programming relaxation of
formulation F and z; the optimal value of F.
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