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The paper presents a generic labeling algorithm for finding all nondominated outcomes of the multiple
objective integer knapsack problem (MOIKP). The algorithm is based on solving the multiple objective
shortest path problem on an underlying network. Algorithms for constructing four network models,
all representing the MOIKP, are also presented. Each network is composed of layers and each network
algorithm, working forward layer by layer, identifies the set of all permanent nondominated labels for
each layer. The effectiveness of the algorithms is supported with numerical results obtained for randomly
generated problems for up to seven objectives while exact algorithms reported in the literature solve
the multiple objective binary knapsack problem with up to three objectives. Extensions of the approach
to other classes of problems including binary variables, bounded variables, multiple constraints, and
time-dependent objective functions are possible.

Published by Elsevier Ltd.

1. Introduction

Themultiple objective knapsack problem (MOKP) is a well known
combinatorial optimization problem with a wide range of applica-
tions. Examples may be found in affordability analysis and capital
budgeting where projects have to be chosen with respect to more
than a single criterion (see e.g., [6,34,24]), in transportation invest-
ment planning [31], or in conservation biology [22].

In this paper we consider the multiple objective integer knapsack
problem (MOIKP) formulated as

max f (x) = Vx

s.t. wx�W

xj �0, integer, j = 1, . . . , l (1)

where V is an r × l matrix with nonnegative entries vij, i = 1, . . . , r,

j = 1, . . . , l. We denote the i th row of V by vi and the j th column
of V by vj. Thus fi(x) = vix, i = 1, . . . , r, represents the i th objective
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among the r conflicting objective functions. A special case of the
above formulation is the case in which r = 2, i.e., the bi-objective
case. The constraint wx�W is interpreted as a capacity constraint
(budget constraint). The set of feasible solutions of (1) is denoted
by X = {x : wx�W , xj �0, integer, j = 1, . . . , l}. We also consider the
MOIKP with the right-hand-side coefficient equal to h=0, 1, 2, . . . ,W
and denote this problem by h-MOIKP.

Throughout the paper, we additionally assume that the weight
coefficients wj, j = 1, . . . , l, and the right-hand-side of the capacity
constraint W are positive integers. In order to avoid trivial solutions
let 0<wj �W , j = 1, . . . , l and

∑l
j=1wj >W .

Solving (1) is understood as generating its efficient (Pareto) so-
lutions. A feasible solution x̂ ∈ X is said to be an efficient solu-
tion of (1) if there is no other feasible solution x ∈ X such that
f (x)� f (x̂), i.e.:

∀i ∈ {1, . . . , r}, fi(x)� fi(x̂)

and ∃i ∈ {1, . . . , r} such that fi(x)>fi(x̂) (2)

Let Xe denote the set of efficient solutions (1) and let Ye denote
the image of Xe in the objective space, that is Ye = f (Xe), where
f = (f1, . . . , fr). The set Ye is referred to as the set of nondominated
outcomes of (1).

The MOKP is a difficult problem to solve since the binary single-
criterion knapsack problem is already NP-complete. While many
authors have proposed algorithms for finding all or some nondomi-
nated outcomes of the MOKP, a majority of the algorithms deal with
the bi-objective knapsack problem [7,13,14,18,32].
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As the MOKP falls into the category of multiple objective in-
teger programs, algorithms proposed for finding nondominated
outcomes of the latter could be also applied to solve the former.
In this review we focus on approaches developed specially for
the knapsack problem with more than two objectives. In general,
these approaches can be classified as exact procedures and meta-
heuristics. The former aims at finding all nondominated outcomes
of the MOKP and includes branch-and-bound procedures [32] and
dynamic-programming-based approaches solved in general with
labeling algorithms.

Villarreal and Karwan [35] were perhaps the first ones who pro-
posed dynamic programming (DP) approaches to the MOKP. They
proposed four approaches: two basic ones, an embedded state ap-
proach, and a hybrid approach. Later in [36], they also extended DP
recursive equations to the general multiple objective integer frame-
work and presented them on the binary MOKP with multiple con-
straints. Klamroth and Wiecek [21] proposed a comprehensive DP
methodology able to solve a broad class of knapsack problems in-
cluding the binary and integer case and more complex extensions
such as MOKP with multiple constraints, multiple periods, and time-
dependent criterion functions. They presented DP recursive equa-
tions for five network models representing the MOIKP and showed
how to apply the equations and networks for the original problem
and its extensions.

An independent research effort was undertaken by Captivo
et al. [7] who applied the concept of a labeling algorithm to the
MOKP viewed as the multiple objective shortest path problem on
an underlying network. The algorithm turned out to be very ef-
fective for some hard instances of the bi-objective binary case of
the MOKP.

The combinatorial nature of MOKP motivated the development of
meta-heuristic algorithms producing a subset or an approximation
of the set of all nondominated outcomes. Arndt and Seelaender [2]
outlined an approach based on the concept of ceiling points. Simu-
lated annealing was extensively studied by Czyzak and Jaszkiewicz
[9] and Ulungu et al. [33]. Hansen [18] and Gandibleux et al. [11]
applied tabu-search principles to construct an approximation of the
nondominated set. Combinations of tabu search and a genetic al-
gorithm were developed by Ben Abdelaziz et al. [5]. A comparative
study of the effectiveness of genetic algorithms was presented by
Zitzler and Thiele [38].

In the current decade, researchers continued efforts on the devel-
opment of genetic or hybrid algorithms, and also exact algorithms.
Improved performance of genetic algorithms due to the use of ap-
proximate dominance was reported by Grosan and Oltsean [15] and
Kumar and Banerjee [23]. Barichard and Hao [3] combined a genetic
procedure with a tabu search operator, Guo et al. [17] proposed a
hybrid memetic algorithm, and Zhang et al. [37] developed an im-
mune system strength Pareto algorithm based on a clonal selection
theory. Some authors also conducted more comparative studies in-
cluding Laumanns et al. [26], Jaszkiewicz [20], and Colombo and
Mumford [8].

In their recent articles, Laumanns et al. [25,27,28] present a
method based on solving a sequence of constrained single-objective
problems for the binary MOKP with three criteria. The same case
is studied by Bazgan et al. [4] who propose an approach based on
dynamic programming. These articles show that despite the success
of metaheuristic algorithms, exact algorithms remain competitive
for solving the MOKP.

In this paper, we focus on the MOIKP since to the best of our
knowledge, a big majority of the literature deals with the binary
case and a computational study of the MOIKP with more than two
objectives has not been reported. We continue the development of
labeling algorithms since they showed to be very promising in con-
structing an effective algorithm for solving the binary MOKP [7]. On

the other hand, the dynamic-programming framework provided by
Klamroth and Wiecek [21] for the MOIKP turned out to be a flex-
ible tool for solving a variety of knapsack problems with multiple
objectives. We therefore present a new framework featuring the
computational effectiveness of labeling algorithms and the modeling
flexibility of dynamic programming. This new framework is com-
posed of a family of networks similar to those in [21] for which a
generic labeling algorithm is designed. The algorithmwith minor ad-
justments solves the multiple objective shortest path problem on ev-
ery network and generates the set of all nondominated outcomes of
the MOIKP.

In this paper, numerical results obtained with exact algorithms
for the MOIKP with up to seven objective functions are reported
for the first time. In Section 2, algorithms for constructing several
network models for the MOIKP are presented. Although the models
are collected from the literature, the algorithms reduce the original
models and are implemented for the first time. The generic label-
ing algorithm, suitable for customization for the proposed network
models, is developed in Section 3 while Section 4 describes com-
putational experiments and contains detailed numerical results. The
effectiveness of the algorithms is supported with numerical results
obtained for randomly generated problems for up to seven objectives
and 20 variables for all models, and three objectives and 40 variables
for one of the models. One of the algorithms clearly outperforms
the others when solving the MOIKP with up to seven objectives.
Section 5 indicates further possibilities for the refinement of the al-
gorithm and concludes the paper.

2. Algorithms for building network models

In this section we present four network models to be used for
solving the MOIKP. These models are based on modeling approaches
available in the literature and developed within the framework of
dynamic programming. The new models are presented in the lan-
guage of network flow programming [1] and their main feature is
their reduced size. The new networks include a smaller number of
vertices and arcs in comparison to the dynamic programming based
networks.

Every network is defined as a directed and connected graph
G = (V,A), where V is the set of vertices with |V| = n and A ⊆
V × V\{(i, i)|i ∈ V} is the set of arcs with |A| = m. The arc link-
ing vertices i and j is denoted by (i, j), and the cost vector c(i, j) =
(c1(i, j), . . . , cr(i, j)) is composed of r criterion values associated with
the arc (i, j). These costs are determined by the negative of the en-
tries of matrix V in (1). In the set V, we distinguish a source vertex,
a sink vertex and terminal vertices that are directly connected with
the sink vertex. A path p from a source vertex s to a sink vertex t in
G is a sequence of arcs and vertices from s to t, where the tail vertex
of a given arc coincides with the head vertex of the next arc in the
path.

Every network is composed of layers. A layer is a set of vertices.
A layer g is called a successor of a layer g′ if there is at least one arc
from g′ to g.

The networks have several common properties. All networks are
acyclic. There may exist arcs from layer g to layers g + 1, g + 2, . . . ,G.
Within a layer, there may exist arcs linking vertices in this layer and
there may exist terminal vertices. In the topological terms, all the
arcs in a network are horizontal, vertical, or diagonal down right.
This property allows us to set permanent labels from the top to the
bottom of each layer.

Every vertex has a position in a layer. A vertex in position k, for
k = 0, . . . ,K in layer g is denoted by gk. For example, 36 denotes a
vertex in layer 3 in position 6.

Throughout the paper we use the following didactic example of
the bi-objective case of MOIKP to illustrate all network models and
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