Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On a class of multivalent functions defined by an extended multiplier transformations

R.M. El-Ashwah^a, M.K. Aouf^b, S.M. El-Deeb^{a,*}

^a Department of Mathematics, Faculty of Science at Damietta, University of Mansoura, New Damietta 34517, Egypt ^b Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 33516, Egypt

ARTICLE INFO

Article history: Received 27 January 2010 Received in revised form 12 May 2010 Accepted 12 May 2010

Keywords: p-valent Analytic Starlike function Convex function Extended multiplier transformations

1. Introduction

Let A(p) denote the class of functions of the form:

$$f(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} z^{k} \quad (p \in N = \{1, 2, \ldots\})$$
(1.1)

which are analytic and *p*-valent in the unit disc $U = \{z : |z| < 1\}$. We write A(1) = A. A function $f \in A(p)$ is said to be *p*-valent starlike of order $\alpha(0 \le \alpha < p)$ in *U* if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad z \in U,$$

we denote by $S_p^*(\alpha)$, the class of all such functions. A function $f \in A(p)$ is said to be *p*-valent convex of order α ($0 \le \alpha < p$) in *U* if

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha, \quad z \in U,$$

let $C_p(\alpha)$ denote the class of all those functions $f \in A(p)$ which are *p*-valently convex of order α in *U*. The class $S_p^*(\alpha)$ was introduced by Patil and Thakare [1] and the class $C_p(\alpha)$ was introduced by Owa [2]. Also we note that the classes S_p^* and K_p were introduced by Goodman [3]. Note that $S_1^*(\alpha) = S^*(\alpha)$ and $C_1(\alpha) = C(\alpha)$ are, respectively, the usual classes of univalent starlike functions of order α and univalent convex functions of order α ($0 \le \alpha < 1$). We shall use S^* and *C* to

* Corresponding author. E-mail addresses: r_elashwah@yahoo.com (R.M. El-Ashwah), mkaouf127@yahoo.com (M.K. Aouf), shezaeldeeb@yahoo.com (S.M. El-Deeb).

ABSTRACT

In the present paper, the authors investigate starlikeness and convexity of a class of multivalent functions defined by an extended multiplier transformation. As a consequence, a number of sufficient conditions for starlikeness and convexity of analytic functions are also obtained.

© 2010 Elsevier Ltd. All rights reserved.

^{0898-1221/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2010.05.008

denote $S^*(0)$ and C(0), respectively, which are the classes of univalent starlike and univalent convex functions. In [4] Catas extended the multiplier transformation and defined the operator $I_n^n(\lambda, \ell)$ on $f(z) \in A(p)$ by the following infinite series:

$$I_{p}^{n}(\lambda,\ell)f(z) = z^{p} + \sum_{k=p+1}^{\infty} \left[\frac{p+\ell+\lambda(k-p)}{p+\ell} \right]^{n} a_{k} z^{k} \quad (\ell \ge 0; \, \lambda \ge 0; \, p \in N \text{ and } n \in N_{0} = N \cup \{0\}).$$
(1.2)

We note that:

$$I_p^0(1,0)f(z) = f(z), I_p^1(1,0)f(z) = \frac{zf'(z)}{p}$$
 and $I_p^2(1,0)f(z) = \frac{zf'(z) + z^2f''(z)}{p^2}$

By specializing the parameters λ , ℓ and p, we obtain the following operators studied by various authors:

(i) $I_p^n(1, \ell)f(z) = I_p(n, \ell)f(z)$ (see [5,6]); (ii) $I_p^n(1, 0)f(z) = D_p^nf(z)$ (see [7–9]); (iii) $I_1^n(1, \ell)f(z) = I_\ell^nf(z)$ (see [10,11]); (iv) $I_1^n(1, 0)f(z) = D_h^nf(z)$ (see [12]); (v) $I_1^n(\lambda, 0)f(z) = D_\lambda^nf(z)$ (see [13]); (vi) $I_1^n(1, 1)f(z) = I^nf(z)$ (see [14]); (vii) $I_p^n(\lambda, 0) = D_{\lambda,p}^nf(z)$, where $D_{\lambda,p}^nf(z)$ is defined by

$$D_{\lambda,p}^{n}f(z) = z^{p} + \sum_{k=p+1}^{\infty} \left[\frac{p+\lambda(k-p)}{p}\right]^{n} a_{k}z^{k}.$$
(1.3)

Also we note that (see [4]):

$$\lambda z \left(I_p^n(\lambda, \ell) f(z) \right)' = (p+\ell) I_p^{n+1}(\lambda, \ell) f(z) - \left[p(1-\lambda) + \ell \right] I_p^n(\lambda, \ell) f(z) \quad (\lambda > 0)$$
(1.4)

and

$$I_p^{n_1}(\lambda, \ell) \left(I_p^{n_2}(\lambda, \ell) f(z) \right) = I_p^{n_2}(\lambda, \ell) \left(I_p^{n_1}(\lambda, \ell) f(z) \right),$$

for all integers n_1 and n_2 .

Also if f is given by (1.1), then we have

$$I_p^n(\lambda, \ell)f(z) = \left(\varphi_p^n(\lambda, \ell) * f\right)(z),$$

where

$$\varphi_p^n(\lambda,\ell)(z) = z^p + \sum_{k=p+1}^{\infty} \left[\frac{p+\ell+\lambda(k-p)}{p+\ell} \right]^m z^k.$$

A function $f \in A(p)$ is said to be in the class $S_n(p, \lambda, \ell, \alpha)$ for all z in U if it satisfies

$$\operatorname{Re}\left\{\frac{I_{p}^{n+1}(\lambda,\ell)f(z)}{I_{p}^{n}(\lambda,\ell)f(z)}\right\} > \frac{\alpha}{p} \quad (\ell \ge 0; \lambda > 0; p \in N; n \in N_{0})$$

$$(1.5)$$

for some α ($0 \le \alpha < p, p \in N$). We note that $S_0(p, 1, 0, \alpha) = S_p^*(\alpha)$ and $S_1(p, 1, 0, \alpha) = C_p(\alpha)$.

In the present paper, our aim is to determine sufficient conditions for a function $f \in \dot{A}(p)$ to be a member of the class $S_n(p, \lambda, \ell, \alpha)$. As a consequence of our main result, we get a number of sufficient conditions for starlikeness and convexity of analytic functions.

2. Main results

To prove our result, we shall make use of Jack's lemma which we state below.

Lemma 1 ([15]). Suppose w(z) be a nonconstant analytic function in U with w(0) = 0. If |w(z)| attains its maximum value at a point $z_0 \in U$ on the circle |z| = r < 1, then $z_0 w'(z_0) = \zeta w(z_0)$, where $\zeta \ge 1$ is some real number.

We now state and prove our main result.

Theorem 1. *If* $f \in A(p)$ *satisfies*

$$\frac{I_p^{n+1}(\lambda,\ell)f(z)}{I_p^n(\lambda,\ell)f(z)} - 1 \bigg|^{\gamma} \left| \frac{I_p^{n+2}(\lambda,\ell)f(z)}{I_p^{n+1}(\lambda,\ell)f(z)} - 1 \right|^{\beta} < M(p,\lambda,\ell,\alpha,\beta,\gamma) \quad (z\in U),$$

$$(2.1)$$

Download English Version:

https://daneshyari.com/en/article/473803

Download Persian Version:

https://daneshyari.com/article/473803

Daneshyari.com