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a b s t r a c t

In this paper, the authors make use of certain analytical techniques for nonlinear algebraic
equation systems in order to give another refinement of the Pólya–Szegö inequality in a
triangle, which is associated with one of Chen’s theorems (see Chen (1993) [12] and Chen
(2000) [13]). Some remarks and observations, aswell as two closely-related openproblems,
are also presented.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and the main results

For a given triangle ABC , we denote by a, b, c its side-lengths, by S its area, by p its semi-perimeter, and by R and r its
circumradius and inradius, respectively.
In the year 1925, Georg Pólya (1887–1985) and Gábor Szegö (1895–1985) ([1, p. 161, Problem 17.1]; see also [2, p. 116])

proved the following beautiful and famous inequality which is known as the Pólya–Szegö inequality in the triangle ABC:

S 5

√
3
4
(abc)

2
3 , (1.1)

which may be compared with Weitzenböck’s inequality in the triangle ABC (see, for example, [3, p. 42, Theorem 4.4]; see
also [4, p. 112, Section 6.3]):
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as well as another known inequality [3, p. 43, Theorem 4.5]:
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From among several extensions and modifications of the Pólya–Szegö inequality (1.1), we first recall the following
sharpened version given by Leng [5] (see also [6, p. 194]):
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Chen [7] (see also [6,8]), on the other hand, strengthened the Pólya–Szegö’s inequality (1.1) as follows:
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More recently, Chen [9] gave a beautifully refined version of the Pólya–Szegö inequality (1.1), which we state here as
Theorem 1 below.

Theorem 1. The best positive constant k for the following inequality:
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is given by

k = F(x0) ≈ 0.12512379476902 · · · ,

where
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and x0 is one real root of the following equation:

6912(x+ 1)3(5x2 + 18x+ 12)6 − (x+ 2)8(x+ 3)3(x2 − 14x− 12)6 = 0.

Themain object of this paper is to present yet another refinement of the Pólya–Szegö inequality (1.1) given by Theorem 2
below.

Theorem 2. The best positive constant k for the following inequality:
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is the real root on the interval
(
1, 2320

)
of the following equation:

80621568k26 − 1169012736k24 + 2306112768k22 − 1986308842752k20

− 271161740638512k18 − 7075252951678008k16 − 72860319298449837k14

− 315039331520882532k12 + 143128010909935188k10 + 407040335182644176k8

+ 175081049919823564k6 − 18908198108992k4 + 539361792k2 − 5184 = 0. (1.6)

Furthermore, the constant k has its numerical approximation given by

k ≈ 1.145209656 · · · .

2. Preliminary results and lemmas

In order to prove Theorem 2, we require several lemmas.

Lemma 1. If the following inequality:
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holds true, then
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Proof. First of all, Chen [7] (see also [8]) derived the following inequality:
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