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a b s t r a c t

We consider the abstract parabolic differential equation u′(t)+ Au(t) = f (t),−∞ < t <
∞ in a Banach space E with −A the infinitesimal generator of an analytic, exponentially
decreasing semigroup exp{−tA} (t ≥ 0). The main purpose of this paper is to establish
the well-posedness of this equation in Cβ(R, Eα), (α, β ∈ [0, 1]), and the well-posedness
of the corresponding Rothe difference scheme in Cβ(Rτ , Eα), (α, β ∈ [0, 1]). Moreover,
we apply our theoretical results to obtain new coercivity inequalities for the solution of
parabolic difference equations.
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1. Introduction

Several types of parabolic equations on the whole real line and parabolic equations on the whole real line with infinite
delays or fading memory have been studied in [1, page 19], [2,3], [4, page 398], [5–7] (see also the references therein).
As a physical application of such type of equations, we may refer to [8], where there is an application of integro-

differential equations arising in population dynamics. Moreover, parabolic equations on the whole real line are used to
describe non-classicalmodels of optics (see [9] and the references therein). Analogous situationmay appear in somephysical
problemswhen considering effects of extremely prolonged (chaotic or periodic) external actions on a body. In such a case the
subject ‘‘forgets’’ its initial conditions and they can be considered as posed at minus infinity. The exact form of the condition
is not important and the uniqueness of the solution is determined by other requirements for the behavior of the solution.
In [2], we investigated the well-posedness of the parabolic equation

u′(t)+ Au(t) = f (t), −∞ < t <∞ (1.1)

in Cβ(R, E), where E is a Banach space with −A the infinitesimal generator of an analytic, exponentially decreasing
semigroup. We proved that problem (1.1) is well-posed in the Hölder space Cβ(R, E), 0 < β < 1, and established the
well-posedness of the Rothe difference scheme for (1.1) in Cβ(Rτ , E), 0 < β < 1. It is known that from that the well-
posedness of (1.1) in Cβ(R, E) for β = 0, β = 1, and the well-posedness of the Rothe difference scheme in Cβ(Rτ , E) for
β = 0, β = 1 do not follow.
In this paper, we extend our previous results [2] to fractional spaces. The well-posedness theorems can also be proved

for β = 0 and β = 1. Furthermore, we apply our theoretical results to obtain new coercivity inequalities for solutions of
parabolic difference equations.

∗ Corresponding author at: Department of Mathematics, Fatih University, 34500, Büyükçekmece, Istanbul, Turkey. Tel.: +90 212 8663300x2086; fax: +90
212 8663402.
E-mail addresses: aashyr@fatih.edu.tr, aashyr@yahoo.com (A. Ashyralyev).

0898-1221/$ – see front matter Crown Copyright© 2010 Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.05.026

http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:aashyr@fatih.edu.tr
mailto:aashyr@yahoo.com
http://dx.doi.org/10.1016/j.camwa.2010.05.026


A. Ashyralyev, Y. Sözen / Computers and Mathematics with Applications 60 (2010) 792–802 793

The coercivity inequalities (maximal regularity, well-posedness) are one of the most powerful and popular tools in the
study of boundary value problems for parabolic and elliptic differential equations [10–12]. Themaximal regularity approach
enables one to investigate the general boundary value problems for both elliptic and parabolic differential equations. This
approach has been used by many researchers to investigate the well-posedness of local and nonlocal boundary value
problems for abstract differential and difference equations in Banach spaces (see [13–16,1,17–20,2,21–30,11], and the
references therein).

2. The differential equation

In this section, we consider the abstract parabolic differential equation

u′(t)+ Au(t) = f (t), −∞ < t <∞, (2.1)

where E is an arbitrary Banach space. Here u(t) and f (t) are, respectively, unknown and given abstract functions defined on
the setR of real numbers with values in E, A is a linear unbounded closed operator acting in E with dense domain D(A) ⊂ E.
We say that u(t) is a solution of problem (2.1), if the following are fulfilled:

1. u(t) is continuously differentiable and bounded, its derivative is bounded.
2. The element u(t) belongs to D(A) for all t ∈ R and the function Au(t) is continuous and bounded in R.
3. u(t) satisfies equation (2.1).

We refer to a solution of problem (2.1) defined in the above sense as a solution of problem (2.1) in the space C(E) = C(R, E)
of all continuously bounded functions ϕ(t) defined on Rwith values in E equipped with the norm

‖ϕ‖C(E) = sup
t∈R
‖ϕ(t)‖E .

Problem (2.1) is well-posed in C(E) if the following are conditions are satisfied:

1. For each f (t) ∈ C(E), problem (2.1) is uniquely solvable. It means that an additive and homogeneous operator u(t) ≡
u(t; f (t)) acting from C(E) to C(E) is defined and gives the solution of problem (2.1) in C(E). Furthermore, the operators
d
dt (u(t; f (t))) and Au(t; f (t)) acting in C(E) have these properties.

2. Regarded as an operator from C(E) to C(E), u(t; f (t)) is continuous. Namely, inequality

‖u(t; f (t))‖C(E) ≤ M‖f ‖C(E), (2.2)

holds for some 1 ≤ M <∞, which is independent of f (t) ∈ C(E).

It follows from the well-posedness of problem (2.1) in C(E) that the operator u(t; f (t)) is continuous in C(E), and the
operator Au(t; f (t)) is defined on the whole space C(E). The operator A, which acts in the Banach space E with domain
D(A), generates via the formula Au = Au(t) an operator A, which acts in the Banach space C(E) and is defined on the
functions u(t) ∈ C(E) with the property that Au(t) ∈ C(E). By the fact that the operator A−1 exists and is bounded, the
operator A−1 exists and is bounded, and hence A is closed in C(E). Hence, the operator Au(t; f (t)) = A(·, f ) is closed in
C(E). It follows from Banach’s theorem that this operator is continuous, i.e. for every f (t) ∈ C(E) the inequality

‖Au(t; f (t))‖C(E) ≤ M‖f ‖C(E), (2.3)

is valid, whereM is independent of f (t).
Thus, from estimates (2.2) and (2.3) it follows that the coercivity inequality

‖u′‖C(E) + ‖Au(t)‖C(E) ≤ M‖f ‖C(E)

is obtained for the solutions ofwell-posed in C(E)problem (2.1)with some1≤M<∞, which is independent of f ∈ C(E) [1].
Throughout the paper,M indicates positive constants which can be different from time to time andwe are not interested

to make precise. We shall writeM(α, β, . . .) to stress the fact that the constant depends only on α, β, . . . .
We shall assume that the operator−A generates a semigroup e−tA (t ≥ 0)with exponentially decaying norm as t →∞,

i.e. there existM ≥ 1, δ > 0 such that

‖e−tA‖E→E ≤ Me−δt . (2.4)

Let v(t) be the function defined by{
(2A)−1etAv, if t < 0,
(2A)−1e−tAv + te−tAv, if t ≥ 0.

Let v ∈ D(A). Then, v(t) is the solution C(E) of (2.1) with f (t) = e−|t|Av.
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