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1. Introduction

Adigraph D is called primitive if and only if D is strongly connected and the greatest common divisor g.c.d.(r, ..., 1s) =
1, where {ry, ..., 15} is the set of distinct lengths of the directed cycles in D [1]. Let D be a primitive digraph with vertex set
V ={1,...,n},and let X C V.The exponent of the set X is the least integer m such that for each vertex i of D there exists a

walk from at least one vertex in X to i of length m, denoted by expp (X) [2].
In 1990, Brualdi and Liu [2] introduced the kth lower multiexponent of a primitive digraph D with n vertices as follows:
for1 <k<n,

f(D, k) := min{expp(X) | X € V and |X| =k},
and
f(n, k) = mDax{f(D, Kk},

where the maximum is taken over all primitive digraphs of order n.
In [2], the authors proved that

n”?—3n+3, k=1,
f(n, k) =141, k=n-1,
0, k=n,

and they proposed the following conjecture about f (n, k).

Conjecture 1.1 ([2]). For any integersn, kwith2 <k <n — 2,

2
f(n,k):]_,_(z,i_k_z)Ln—lJ_Ln_lJ y

k k

It can be seen that the above equality is also true fork = 1,n — 1.
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The kth lower multiexponent of a primitive digraph has been studied by many. In particular, in [3-7], Conjecture 1.1 has
been verified for several classes of digraphs, including primitive digraphs with a directed cycle whose length is divisible k,
primitive simple graphs, primitive tournaments, primitive symmetric digraphs, etc.

In this paper, we prove that Conjecture 1.1 holds for the following cases:

Mk=n—-2,n—3,n—4,n-25;
(2) small n, wheren < 8;
(3) the class of primitive micro-symmetric digraphs of order n.

2. Preliminaries

Let D, be a primitive digraph with vertices 1,2, ...,nandarcs1 > n—-n—1— .- - 2 — land 1 — n— 1, where
n > 2.1tis well known that D, is called the Wielandt digraph [1]. The kth lower multiexponent of the Wielandt digraph had
been investigated in [2,1].

Lemma 2.1 ([2,1]). Let n, k be positive integers with 1 < k < n — 1. Then

2
f(Dn,k)=1+(2n—k—2)L"_]J_Ln—lJ "

k k

By Lemma 2.1, D, is an extremal digraph reaching the bound given by f (n, k). o
Let D, be a primitive digraph obtained from D,, by adding an arc 2 — n, where n > 4. Note that D, is a subdigraph of D,,,
thenforl1<k<n-1,

£ (D k) < f (D, ).

For convenience, by an [-dicycle we mean a directed cycle of length L. The following lemmas give some upper bounds of
f(D, k) for different cases, which are useful in this paper.

Lemma 2.2 ([2]). Let D be a primitive digraph of order n. Suppose that D has a s-dicycle. Then for any integer k withs < k < n,

f(D, k) <n—k.

Lemma 2.3 ([3]). Let D be a primitive digraph with n vertices. If there is a s-dicycle intersecting with a (s + 1)-dicycle (or with
a (s + 2)-dicycle, where s is odd) in D, then for k < s, we have

Ln—lJ {n—lJz
fD, k) <14+2n—k—-2)| —— | — - k.

k k

Lemma 2.4 ([1,3]). Let D be a primitive digraph with n vertices which contains a s-dicycle, where 1 < s < n — 1. Then for ks,

2
f(D,k)f1+(2n-k-2){"‘1J_{”‘1J "
k k

Let X C V(D) and let R; (X) be the set of vertices in D, which can be reached by a walk of length t from some vertex in X,
where t is a nonnegative integer.

Lemma 2.5. Let H,(ll) be a primitive digraph with vertices 1,2,...,nandarcs1 - n - n—1 — --- —> 2 — land
1— n— 3.Then

f(H,ﬁ”,n—4) <7 forn>7
and

f(H,ﬁ”,n—S) <8 forn> 8.

Proof. Let X; = {1,2,...,n} —{2,4,n — 2, n} be asetof (n— 4) vertices, where n > 7. It is not difficult to verify that
Ro (X1) = Xy, RiXy)={1,2,...,n} —{1,3,n—1},
R (X)) ={1,2,...,n}—{2,n—=2,n}, ...,
Rs X1) =1{1,2,...,n} — {n — 2}, R; (X1) ={1,2,...,n}.
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