Available online at www.sciencedirect.com

ScienceDirect RUSSIAN GEOLOGY

AND GEOPHYSICS

el

ELSEVIE

Russian Geology and Geophysics 56 (2015) 1091-1095

www.elsevier.com/locate/rgg

Local pressure lows as possible sinks of fluids in geologic structures

B.P. Sibiryakov ***, E.B. Sibiryakov 2

* A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
® Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Received 27 August 2013; received in revised form 19 May 2014; accepted 8 December 2014

Abstract

Local pressure lows in layered sections perturbed by anticlinal structures are studied analytically using equations for pressure change across
interfaces. They are simple equations of pressure difference for low-angle structures and boundary integral equations for steeply dipping
anticlines. Pressure may decrease locally near the crests of anticlines, as well as away from them at distances commensurate to the anticline
height. Predicting stress patterns, which are specific for different groups of geologic structures, is a difficult task. However, some components
of the stress field, such as low-pressure zones which may act as sinks for fluids, are relatively easy to constrain. Stress in these zones depends
on the dip of anticlines and their curvature at each surface point. Negative curvature causes additional lateral extension and promotes further

decrease of overburden pressure around the crests.
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Introduction

Simulations for 3D fluid dynamics often remain beyond the
conventional reservoir modeling tasks. Seismic inversion
resolves mostly the boundaries of geologic structures but fails
to constrain stress and strain patterns. Meanwhile, shear stress
(second stress tensor invariant) correlates with porosity and
permeability, and tangent stress highs may be indicator for
porous rocks; the stress tensor also has implications for
preferable orientations of fractures (Sibiryakov et al., 2004).
Of course, stress can be only tentative guides to the distribu-
tion of fluids because flow requires some transport system.

Pressure is another important indicator of fluid patterns.
Local pressure lows may act as natural pumps of fluids
accommodated by pores and cracks in fractured reservoirs.
Stress estimates are inferred from velocity of P and S waves
and density of rocks. Approximate estimates of stress in
low-angle anticlinal structures can be obtained with an
algorithm presented by Sibiryakov et al. (2004). Note that
stress in these structures is not hydrostatic even in the case of
horizontal layering (Sibiryakov et al., 2004): vertical stress
equals the overburden pressure P, while horizontal stress is
much lower, being P(1 — 272), where y=vg/vp or the S-to-P
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velocity ratio. P-wave interval velocities are evaluated from
3D seismic data, while densities and S velocities are extrapo-
lated from well logs.

In this study we estimate stress in a way even simpler than
in (Sibiryakov et al., 2004): approximate values are obtained
via interface pressure change for low-angle anticlines, and
boundary integral equations are used for high-angle structures.

Layered structures

Constraining stress in 3D structures requires integrating the
equilibrium equation with boundary conditions on the layer
surfaces. In terms of stress, a layered medium with low-angle
structures fits a zero approximation of horizontal layering.
Stress is not hydrostatic even in this simplest case. Namely,
the vertical stress G, =—p gz equals the overburden weight,
where g is the acceleration due to gravity and p is the density.
With Hooke’s law given by Oj; = A0 8;; + 21l e, the principal
stress components are GOy =Gy, =Aey, Oy =(A+2U)e,,
while all other components of the stress tensor are zero. The
stress ratio is related to the S-to-P velocity ratio as
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Fig. 1. Depth dependence of pressure in a layered structure. a, Velocity ratio Y is higher below than above, absolute pressure drops at the interface; b, velocity ratio

7vis lower below than above, absolute pressure rises at the interface.

where Y=v¢/vp and T is the shear stress, i.e., the departure

from hydrostatic stress. Pressure, in turn, is related to the stress
tensor as

6,+t0,,+0 4 4
P=W=—pgz[l—§vz]=%[l—gyz],

where Py, is weight of rocks. Thus, pressure is lower than the
weight of rocks; more so, if the velocity ratio changes, the
pressure likewise jumps across the interface, the difference

being AP:%(VIZ—'\{ZZ) Py. In the case when the ratio y is

lower in the upper layer than in the lower one, the pressure
jumps at their boundary to become lower in the lower layer
which thus becomes a potential sink for fluids. In the
depth-dependent pressure pattern of a layered medium (Fig. 1)
with an interface at the depth H, the pressure difference is
either positive (Fig. 1a) or negative (Fig. 1b) at y; > ¥, and
Y1 < Yo, respectively.

Low-angle anticlines

The system of equilibrium equations for a layered section
containing an anticlinal structure implies stiff boundary con-
ditions.

The assumption that the stress vector components at the
interface z =z¢ (x, y) are

Py=—P 82 (X y)ny py=—p gzo(x, y)nys p,=—pgzp(x, y)

is valid because the contribution of Poisson’s integral over the
structure volume to the field of displacement (and stress) is
vanishing relative to that of the overburden pressure. This
condition is obviously unfeasible for shallow structures but
works for depths below 1 km (the deeper the better) and for
structures reaching hundreds of meters high or less. If the
velocity ratio integral over the structure volume V is far less
than that of the host rock volume V, the difference between
the second and third integrals is negligible, and the field of
vertical displacement is given by the simple equation

up = iz JTd y)av, + Lz [T, y) av,
Vs V VSI Vi
1 2 Z2
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Then the horizontal displacement components at the inter-
face z=z9(x,y) are assumed to be related with the verti-
cal components, to a good accuracy: u, = u,cos(n, x); Uy =
uz cos (n, y). This assumption is obviously inapplicable to steep
structures, which is however quite reasonable (see below). It
relates some stress elements with both rock physics and
geometry (dip and curvature) of structures, while the role of

these factors is surprisingly sensitive to depth. In an infinite
2
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assumption implies that at the interface z=zg(x, y) the dis-

space, the vertical displacement is u, =

placement field is approximately described by the equation
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where u, = —p g2z ./ (A +2W). Otherwise, equation (1) can
be written as
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Total dilatation strain (relative density increase or decrease)
at the interface z =z (x, y) is approximated by:
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