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Geomagnetic induction responses of anisotropic conducting mantle 

V.V. Plotkin *

A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

Received 11 April 2013; accepted 3 September 2013

Abstract

Phase change of dielectric magnesiowüstite in the lower mantle may leave signatures in geomagnetic records of the globally distributed
array of observatories. The related features appear in EM induction responses of lower mantle, which are studied theoretically. The surface
EM field corresponding to a response of the earth with conductivity anisotropy in a mantle spherical layer is presented as the sum of the
magnetic and electric modes. Equations for the fields of both modes and their relationship in a weakly anisotropic earth are obtained by the
perturbation method. The two field modes are analyzed jointly and separately to characterize the conductivity tensor of the anisotropic lower
mantle. The tensor elements corresponding to the tangential components of the field can be estimated from the magnetic mode alone recorded
currently by the global network of geomagnetic observatories. For the tensor data to be complete, observatory data on lateral variations of
the electric field are required in addition to three-component geomagnetic records.
© 2014, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.

Keywords: magnesiowüstite; lower mantle; conductivity anisotropy; induction; three-component records of geomagnetic variations; observatories; horizontal
components of electric field  

Introduction

The electrical conductivity patterns of the deep earth
through ~2000–2500 km can be inferred from global electro-
magnetic induction data (Rotanova and Pushkov, 1982).
Magnetic bays (several hours long) and diurnal variations can
record conductivities to depths of ~500–700 km. Longer-pe-
riod variations from 30 days to one year (Olsen, 1999) have
implications for conductivities till ~2000 km, which grow with
depth to ~2 S/m at ~800 km and then remain almost invariable
in the range 3–10 S/m between 800 and 2000 km. Some
information can be also drawn from secular geomagnetic
variations and jerks due to internal magnetic sources (Ducruix
et al., 1980). CHAMP satellite data on eleven magnetic storms
(Velymsky et al., 2006) recorded lower mantle conductivity
values of a few S/m. However, the controls and magnitude of
the lower mantle electrical conductivity remain poorly con-
strained. The available geophysical estimates of its magnitude
to ~3000 km depths vary from σ~1–3 S/m to more than
10 S/m (Honkura and Matsushima, 1998). 

Conductivity modeling for depths between 200 and
2900 km from laboratory experiments with minerals at lower

mantle temperatures and pressures (Xu et al., 2000) showed
good agreement with observed data in period dependence of
apparent resistivity when the model assumed a ~5 × 105 S/m
core and a contribution of magnesiowüstite below 800 km.

Phase changes of minerals at high pressures and tempera-
tures have been a subject of much recent research. Ovchin-
nikov (2011) predicted possible insulator-to-metal transition
of magnesiowüstite at ~60–80 GPa and ~1900–2100 °C and
then estimated the ensuing conductivity increase at the depths
1400–1900 km (Ovchinnikov et al., 2012). Earlier we (Plotkin
et al., 2013) simulated the effect of magnesiowüstite metalli-
zation using spherical harmonic analysis of mantle EM
responses in observatory geomagnetic records at periods from
27 days to several decades. Estimating the predicted effect
from apparent resistivity being difficult, we inverted frequency
dependences of geomagnetic variations at the same periods
(Plotkin et al., 2014). The inversion procedure was tested in
numerical experiments with synthetic geomagnetic data at
periods from 50 days to 33 years, and the inversion quality
was satisfactory for several lower-order spherical harmonics
at known boundaries of spherical layers. Inversion of real
observatory records (monthly means of the geomagnetic field
from 1920 through 2009) indicates possible presence of a
conductor in the lower mantle.
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On the other hand, the magnesiowüstite phase change in
the lower mantle is associated with physical effects in the
lattice, and thus may be evidence of conductivity anisotropy.
It is thus interesting to see whether the lower mantle
conductivity anisotropy is detectable by geophysical methods.
This is the objective of the reported study of geomagnetic
induction responses.

Equations of EM induction in the case of mantle
conductivity anisotropy 

It is convenient to present the electromagnetic field in the
induction problem as a sum of the electric and magnetic modes
(Plotkin, 2004). The two modes are independent in spherically
symmetrical and isotropic media but are related otherwise. In
order to take into account the relationship of the two modes
in the case of anisotropy and deviation from spherical
symmetry, the tangential components of the electric E (r) and
magnetic H (r) fields, as well as the current J = σ̂E induced
in an anisotropic  earth with the conductivity tensor σ̂ are
written as:
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where r, θ, ϕ are the spherical coordinates of a point in a

system originated at the Earth’s center, E (1) and H (0) are,
respectively, the scalar potentials of the electric and magnetic

fields, and J (1) is the current in the electric mode; E (0),

H (1), and J (0) are, respectively, the same parameters for the
magnetic mode. As one can check with direct calculations, the
two modes can remain independent at this presentation after
applying the rot operators (Plotkin, 2005). For example, for
the electric field components:
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Using Maxwell’s equations rot E = −iωµ0 H and rot H = J

for the fields ~eiωt (µ0 and ω are the magnetic permeability
and the angular frequency, respectively) and their conse-
quences 

rot rot E + iωµ0 J = 0, rot rot rot E + iωµ0 rot J = 0, 

it is easy to obtain the system of equations for the potentials
of the EM modes at general assumptions on conductivity
anisotropy in a heterogeneous earth:
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The potentials of the magnetic and electric modes are
related as (Plotkin, 2004):
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The last equation in system (4) does not include the

magnetic mode current potential J (0), which is excluded by
the angular term of the div operator, while system (3) does

not include the current potential J (1) of the electric mode
according to the first equation in (2). Systems (3) and (4) are,
respectively, for the magnetic and electric modes, which are
related uniquely via the properties of the current potentials.
For this case, the following equations are valid, which can be
checked by substituting Jθ and Jϕ from (1):
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Equations (6) for the tangential components of the current
J (and similar equations for E and H) allow estimating the

potentials of the electric J (1) and magnetic J (0) modes on the
sphere of any radius if the angular distributions of the
components are known.

The modes and systems (3) and (4) are independent in a
spherically layered isotropic earth (since J = σ (r) E while (1)

leads to J (0) = σ (r) E (0) and J (1) = σ (r) E (1)), but are related
in a laterally heterogeneous earth (Plotkin, 2004).

In the case of conductivity anisotropy, 

Jr = σrr Er + σrθ Eθ + σrϕ Eϕ,

Jθ = σθr Er + σθθ Eθ + σθϕ Eϕ, (7)

Jϕ = σϕr Er + σϕθ Eθ + σϕϕ Eϕ.

The main focus in this consideration being on anisotropy,
we may assume for simplicity that all  components are
invariable laterally (or with angle), though may vary with the
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