
Computers and Mathematics with Applications 59 (2010) 2141–2149

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On a superconvergent lattice Boltzmann boundary schemeI

François Dubois a,b,∗, Pierre Lallemand c, Mahdi Tekitek a,1
a Numerical Analysis and Partial Differential Equations, Department of Mathematics, Paris Sud University, Orsay, France
b Conservatoire National des Arts et Métiers, EA3196, Paris, France
c Centre National de la Recherche Scientifique, Paris, France

a r t i c l e i n f o

Keywords:
Lattice Boltzmann scheme
Boundary conditions
Taylor expansion method

a b s t r a c t

In a seminal paper [20], Ginzburg and Adler (1994) analyzed the bounce-back boundary
conditions for the lattice Boltzmann scheme and showed that it could be made exact to
second order for the Poiseuille flow if some expressions depending upon the parameters
of the method were satisfied, thus defining so-called ‘‘magic parameters’’. Using the Taylor
expansion method that one of us developed, we analyze a series of simple situations (1D
and 2D) for diffusion and for linear fluid problems using bounce-back and ‘‘anti bounce-
back’’ numerical boundary conditions. The result is that ‘‘magic parameters’’ depend upon
the detailed choice of the moments and of their equilibrium values. They may also depend
upon the way the flow is driven.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The theoretical analysis of the lattice Boltzmann scheme [1–7] is an active subject of research. Recall that themethodwas
first analyzed by d’Humières [5] with a Chapman–Enskog expansion coming from statistical physics; we also refer to Asinari
and Ohwada [8] for a method of analysis based on the Grad moment system. A fruitful idea followed by Junk et al. [9–11] is
to use the so-called equivalent equation method derived independently by Lerat–Peyret [12] and Warming and Hyett [13]
(see also [14]). An infinitesimal parameter is introduced and the finite differences operators are expanded into a family
of equivalent partial differential equations. The main goal of this study is to use the Taylor expansion method [10,11] in
order to increase the accuracy of boundary conditions for simple problems with analytical solutions. We first consider a
one-dimensional (1D) diffusion problem and study the influence of the definition of the moments and of their equilibrium
value. We then consider a two-dimensional (2D) Poiseuille flow using several ways to enforce a pressure gradient.
We consider regular lattices parametrized by a space step1x. We introduce a time step1t and adopt ‘‘acoustic’’ scaling:

the ratio λ ≡ 1x
1t is a fixed reference velocity for each study. As a consequence, the parameters 1x and 1t are equivalent

infinitesimals. Note that as this work is devoted to boundaries, we shall use a particular way to test the accuracy of a
numerical scheme as will be discussed later.

2. Diffusion problem in one space dimension

Weconsider the classical Lattice Boltzmannmodel D1Q3with three discrete velocities and one conservation law tomodel
diffusion problems. We choose the velocities vi (0 ≤ i ≤ 2) such that v0 = 0, v1 = λ, v2 = −λ. At each mesh point, there
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are three functions {fj} that can be interpreted as populations of fictitious particles. These populations evolve according to
the lattice Boltzmann scheme which we write as in [10]:

fj(x, t +1t) = f ∗j (x− vj1t, t), 0 ≤ j ≤ 2, (1)

where the superscript ∗ denotes post-collision quantities and x a vertex of the lattice. Therefore during each time increment
1t there are two fundamental steps: advection and collision. The advection step describes the motion of a particle which
has undergone collision at node x− vj1t and goes to the jth neighboring node. Following d’Humières [5], the collision step
is defined in the space of moments. For D1Q3 three moments {m`} are obtained by a linear transformation of vectors fj:

m0 = f0 + f1 + f2 ≡ ρ(density), m1 = λ(f1 − f2), m2 =
λ2

2
(f1 + f2). (2)

In consequence, we introduce a matrix of momentsM to represent moments like (2); it takes the form

M =

1 1 1
0 λ −λ

0
λ2

2
λ2

2

 (3)

and the relations (2) can be simply written as m = M f . To simulate diffusion problems, we conserve only the density
moment ρ in the collision step and obtain one macroscopic scalar equation. The other quantities (nonconserved moments)
are assumed to relax towards equilibrium values (meq1 ,m

eq
2 ) following:

m∗` = (1− s`)m` + s`m
eq
` , 1 ≤ ` ≤ 2, (4)

where s` (0 < s` < 2, for ` = 1, 2) are relaxation rates, not necessarily equal to a single value as in the BGK case [4]. The
equilibrium valuesmeq` of the nonconserved moments in Eq. (4) determine the macroscopic behavior of the scheme. Indeed
with the following choice of equilibrium values (neglecting nonlinear contributions):

meq1 = 0, meq2 = ζ
λ2

2
ρ (5)

and using the Taylor expansionmethodwe find (see e.g. [15]) that the equivalent partial differential equation of the numer-
ical scheme up to order three in1x is a diffusion equation:

∂ρ

∂t
− κ

∂2ρ

∂x2
= O(σ11x3). (6)

The value of the diffusivity κ is given according to

κ = 1tλ2σ1ζ (7)

where σ` ≡ 1
s`
−
1
2 , ` = 1, 2.

Remark that the thermal diffusivity κ is imposed by the Physics. Moreover the scale velocity λ is fixed and the coefficient
ζ is also imposed. When we refine the mesh, the coefficient σ1 must be chosen in order to enforce relation (7). In other
terms, the product σ11t must be maintained constant. Then the right hand side of relation (6) exhibits a second order
truncation error of the lattice Boltzmann scheme for a given thermal diffusivity κ . Associated with stability properties (see
Junk and Yong [16]), convergence properties of lattice Boltzmann scheme can be established, as in [17].

3. Localization of a 1D boundary

Let us introduce a constant c and consider the following 1D Poisson problem:

− K
d2ρ
dx2
= c in ]0, 1[, ρ(0) = ρ(1) = 0. (8)

We take an ‘‘anti bounce-back’’ numerical boundary condition at x = 0:

f1(xb, t +1t) = −f2(xe, t +1t) = −f ∗2 (xb, t), (9)

with xb the fluid node and xe the external node as presented in Fig. 1, and a similar condition for x = 1. Auniformbody source
(δp) is added to the Boltzmann scheme tomodel the right hand side c of Eq. (8). Sowe canwrite the lattice Boltzmann scheme
as follows: (i) m = M f , (ii) m̃0 = m0 + 1

2δp, (iii) evaluate the other moments, (iv) relaxation (4) of the other moments,
(v) m̃0 = m0 + 1

2δp, (vi) f = M
−1m, (vii) advection step (1) and boundary conditions. The exact solution of problem (8)

is elementary: u(x) = c x (1−x)
2 K . We analyze the behavior of the discrete model to show whether it can be tuned so that the

location of the ‘‘numerical boundary’’ can be fixed at mid-point as expected from ‘‘anti bounce-back’’. Thus we shall use as
criterion for accuracy the difference between the imposed boundary and the ‘‘numerically determined’’ boundary.
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