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Inversion of gravity data is one of the most important steps in the quantitative interpretation of practical data.
Inversion is a mathematical technique that automatically constructs a subsurface geophysical model frommea-
sured data, incorporating some priori information. Inversion of gravity data is time consuming because of in-
crease in data and model parameters. Some efforts have been made to deal with this problem, one of them is
using fast algorithms for solving system of equations in inverse problem. Lanczos bidiagonalization method is
a fast algorithm that works based on Krylov subspace iterations and projection method, but cannot always pro-
vide a good basis for a projectionmethod. So in this study, we combined the Krylovmethodwith a regularization
method applied to the low-dimensional projected problem. To achieve the goal, the orthonormal basis vectors of
the discrete cosine transform (DCT)were used to build the low-dimensional subspace. The forward operatorma-
trix replaced with a matrix of lower dimension, thus, the required memory and running time of the inverse
modeling is decreased by using the proposed algorithm. It is shown that this algorithm can be appropriate to
solve a Tikhonov cost function for inversion of gravity data. The proposed method has been applied on a noise-
corrupted synthetic data and field gravity data (Mobrun gravity data) to demonstrate its reliability for three di-
mensional (3D) gravity inversion. The obtained results of 3D inversion both synthetic and field gravity data
(Mobrun gravity data) indicate the proposed inversion algorithm could produce density models consistent
with true structures.
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1. Introduction

Gravity measurements have been used in a wide range of investiga-
tions including estimation of the crustal thickness,mapping bedrock to-
pography, mineral and petroleum exploration, and recently developed
microgravity investigations such as engineering and environmental
problems (Hinze, 1990; Ward, 1990; Nabighian et al., 2005). The inver-
sion of gravity data is an important step in the quantitative interpreta-
tion of practical data, since construction of density contrast models
significantly increases the amount of information that can be achieved
from the gravity data (Li and Oldenburg, 1998). Inversion is defined as
a mathematical technique that automatically constructs a subsurface
physical property model from measured data by incorporating a priori
information. The recovered models must predict measured data ade-
quately (Foks et al., 2014). The solution of the inverse problem is depen-
dent upon the formulation and discretization of the geophysical

forward problem (Martin et al., 2013). In the linear inversion of gravity
data it is assumed that the subsurface under the survey area can be
discretized into rectangular blocks of constant density (Boulanger and
Chouteau, 2001; Vatankhah et al., 2015). The density of these blocks
are approximated by solving the linear inverse problem. Linear inver-
sion of gravity data is usually ill-posed and the solution can be non-
unique and unstable. The conventional way of solving ill-posed inverse
problems is using regularization theory (Tikhonov et al., 1977). It uses
the minimization of a cost function that combines the data misfit with
a Tikhonov type regularization (see, e.g. Vogel, 2002; Hansen, 2007;
Aster et al., 2013).

Because lack of depth resolution in inversion of gravity data, Li and
Oldenburg (1998) introduced a depth-weighting function that counteract
the decreasing sensitivities of cells with increasing depth. The depth-
weighting givesmoreweight to cells as depth increases. Depthweighting
function has been applied in different inversion algorithms (Boulanger
and Chouteau, 2001; Portniaguine and Zhdanov, 2002; Malehmir et al.,
2009; Namaki et al., 2011; Vatankhah et al., 2015).

Inversion of gravity data can suffer from large processing times as
new sensors and acquisition platforms continue to collect dense data
sets over large exploration regions. This problem is compounded by
the necessary increase in model parameters (Foks et al., 2014). For
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fast inversion some efforts has been made in some areas: the forward
modeling algorithm, matrix storage, the number of model parameters
and the number of data, and using a fast and efficient algorithm for solv-
ing system of equations like the Lanczos bidiagonalization method.

For fast forward modeling, Pilkington (1997) utilized the 2D fast
Fourier transform and convolution theorem while Caratori Tontini
et al. (2009) used the 3D fast Fourier transform for the aim. Thewavelet
transform with orthonormal compactly supported wavelets has been
utilized to compress kernel matrix represents the dense matrix in
sparse format (Li and Oldenburg, 2003; Davis and Li, 2011; Martin
et al., 2013). The number of model parameters has been reduced by
mesh refinement (Ascher and Haber, 2001). Quadtree and octree
mesh discretization has been utilized in potential field forward model-
ing and inversion which data adaptively construct a mesh based on res-
olution of anomaly (Davis and Li, 2011, 2013). Foks et al. (2014) have
used an adaptive downsampling method to reduce the number of
potential-field data for forward modeling and inversion. Fast solver al-
gorithm like conjugate gradient (CG) has been applied for computation
of model parameters (Li and Oldenburg, 2003; Namaki et al., 2011). Re-
cently, Lanczos bidiagonalization (LB) method (Paige and Saunders,
1982) has been utilized for inversion of potential field data that is faster
than CG method (Abedi et al., 2013; Martin et al., 2013).

Both CG and LB methods work based on Krylov subspace iterations
and projection method. The Krylov subspace cannot always provide a
goodbasis for a projectionmethod, becauseKrylov subspace is generated
on the basis of the given, noisy data. So, the Krylov subspace tends to in-
clude both the desired basis vectors and some basis vectors that are not
so important for the regularized solution (Hansen, 2010). The solution
could be attained faster by removing this problem. Two level methods
have been applied for the solution of the Tikhonov problem. In these
methods the solution space is divided into two subspaces, one of them
with a small dimension that utilizes basis vectors chosen such that this
subspace represents approximate regularized solutions with a direct
method, while the component of the solution in the remaining subspace
is computed by an iterative algorithm (Hanke and Vogel, 1999; Jacobsen
et al., 2003). Hansen (2010) proposed an algorithm that combines the
Krylov method with a regularization method applied to the low-
dimensional projected problem. For fast linear inversion of gravity data,
we implemented the solution space priorconditioning with LB method.
This paper explains the solution space priorconditioning that the hybrid
of cosine transformandKrylov projection algorithm is used for fast linear
inversion of gravity data and shows how this approach can reduce re-
quired memory and time for inversion of the geophysical data.

2. Methodology

To perform inverse modeling, the subsurface under the survey area
is discretized into rectangular prisms of known sizes and positions.
The density contrastswithin each prism is unknownparameter to be es-
timated by solving inverse problem. A linear relationship between den-
sity and gravity anomaly is a valid approximation; therefore, the inverse
solution obtained by solving a linear system of equations (Bear et al.,
1995; Martin et al., 2013).

2.1. Forward modeling

Here, the formula given by Blakely (1996) has been used to compute
the gravity response of each prism, after discretization of subsurface by
rectangular prisms. If the observed gravity anomalies are caused by n
subsurface rectangular prisms, the gravity anomaly at the field point i
is given by

gi¼
Xn
j¼1

Gijρ j; i¼1;…;m ð1Þ

Where gi is gravity observation at the point i, ρj is density contrast of
prism j and Gij relates gravity observation at the point i to the subsurface
rectangular prism j with unit density. In the matrix notation Eq. (1) can
be written as

Gm ¼ d;G ∈ Rm�n;d ∈ Rm;m ∈ Rn ð2Þ

Here, G is forward operator matrix that is also called sensitivity ma-
trix that maps the physical parameters space into the data space.m de-
notes the vector of unknownmodel parameters andd is data vector that
is given by measurements (gi). There are some error in measurement
data because of noise that assumed to be uncorrelated and have Gauss-
ian distribution, So

Gm ¼ dþ e; e ∈ Rm ð3Þ

Where e is vector of data error and dobs=d+e is vector of observed
data. The main purpose of the gravity inverse problem is to find a geo-
logically plausible density model (m) that predicts measured data
(dobs) at the noise level (Vatankhah et al., 2015).

2.2. Inverse modeling

In order to compute an approximate solution of the density distribu-
tionm in Eq. (3), the inverse problem is formulated by theminimization
of the penalized least squares Tikhonov parametric functional as:
(Tikhonov et al., 1977)

m αð Þ ¼ argmin
m

‖Wd Gm−dobsð Þ‖
2

2 þ α‖Dm‖
2

2

( )
ð4Þ

wherem(α) is desired densitymodel,ΦðdÞ¼‖WdðGm−dobsÞ‖
2

2 isweight-

ed data misfit andΦðmÞ¼‖Dm‖
2

2 is the Tikhonov regularization function.
Wd is dataweightingmatrix givenbyWd ¼ diagð1=σ1;…;1=σmÞ.Where,
σi stands for the standard deviation of the noise in the ith observation
data.D depicts regularizationmatrix and αN0 is regularization parameter
or tradeoff parameter which controls relative balance between the data
misfit and Tikhonov regularization function.

We applied Wdepth ¼ diagð1=ðz1Þβ ;…;1=ðznÞβÞ as a depth weighting
matrix (Li andOldenburg, 1998) to compensate lackof thedata sensitivity
to the deepermodel parameters. Here, z j is depth of jthmodel parameter
and β=1 is suitable for inversion of gravity data (Li and Oldenburg,
1998). Depth weighting matrix can be entered into Eq. (4) by replacing
regularization matrix (D) with depth weighting matrix (Wdepth), D¼
Wdepth. Introducing, Gξ ¼ WdGD

−1, y¼Dm and dξ ¼ Wddobs, solution of
the gravity inversion is equivalent to solving an inverse problem whose
forward mapping is given by

Gξy¼dξ ð5Þ

The solution of Eq. (5) is given by

y αð Þ ¼ argmin
y

‖Gξy−dξÞ‖
2

2 þ α‖y‖
2

2

( )
ð6Þ

Depth weighting matrix is diagonal and has an inverse, so m(α) is
obtained by

m αð Þ ¼ D−1y αð Þ ð7Þ
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