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from a simultaneous analysis of the field at various scales or, in other words, at many altitudes. Accuracy in
performing upward continuation and differentiation of the field has therefore a key role for this class of methods.
We here describe an accurate method for performing upward continuation and vertical differentiation in the
space-domain. We perform a direct discretization of the integral equations for upward continuation and Hilbert
transform; from these equations we then define matrix operators performing the transformation, which are sym-
metric (upward continuation) or anti-symmetric (differentiation), respectively. Thanks to these properties, just
the first row of the matrices needs to be computed, so to decrease dramatically the computation cost. Our ap-
proach allows a simple procedure, with the advantage of not involving large data extension or tapering, as due
instead in case of Fourier domain computation. It also allows level-to-drape upward continuation and a stable dif-
ferentiation at high frequencies; finally, upward continuation and differentiation kernels may be merged into a
single kernel. The accuracy of our approach is shown to be important for multi-scale algorithms, such as the con-
tinuous wavelet transform or the DEXP (depth from extreme point method), because border errors, which tend
to propagate largely at the largest scales, are radically reduced. The application of our algorithm to synthetic and
real-case gravity and magnetic data sets confirms the accuracy of our space domain strategy over FFT algorithms
and standard convolution procedures.
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1. Introduction

Multiscale analysis methods are based on the interpretation of po-
tential fields at different levels and are useful to yield a fast 3D imaging
of the source distribution, which may be used as a first stage of interpre-
tation, before performing more refined methods such as inversion.
Many multiscale methods have been developed for potential field inter-
pretation. This class of methods is mainly based on upward continuation
of potential fields (Pedersen, 1991; Sailhac and Gibert, 2003; Fedi and
Florio, 2006; Fedi, 2007; Florio et al., 2009; Fedi et al., 2009, 2012; Fedi
and Abbas, 2013; Abbas et al., 2014; Baniamerian et al,, 2016). Recently
Fedi and Pilkington (2012) have demonstrated that all imaging
methods, e.g., Sandwich model (Pedersen, 1991), correlation (Patella,
1997), migration (Zhdanov, 2002), wavelet transform (Moreau et al.,
1997) and depth from extreme points (DEXP; Fedi, 2007) are, in prac-
tice, multiscale methods and involve upward continuation or a simulta-
neous application of upward continuation and differentiation to
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potential fields. Therefore, when using imaging methods it is very im-
portant to perform the whole procedure as accurately as possible and,
in particular, reduce noise/edge effects as well.

As regards upward continuation, it is well known that, from Green's
third identity (e.g., Baranov, 1975; Parasnis, 1986; Blakely, 1996)), a po-
tential field measured on a plane surface at altitude z’, U(x’,y’,z’), can be
transformed to that at a higher-level surface, by using the upward con-
tinuation linear transformation:

U(X/7y/7zl)
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where {x,y,z} are the coordinates of any point on a surface character-
ized by z>z'. This transformation behaves like a low-pass filter, since it
attenuates the short-wavelength contributions to the signal, and it can
be used to enhance the anomalies due to deep sources. However, differ-
ently from other low-pass filters, it is expressly related to the physically-
based variation of the field with the altitude (Florio et al., 2014). The
simplest form of applying Eq. (1) is the level-to-level upward continua-
tion. However, we need often applying upward continuation as a level-
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to-draped, draped-to-level or draped-to-draped continuation (Cordell,
1985; Fedi et al., 1999; Xia et al., 1993; Wang, 2006; Pilkington and
Roest, 1992; Ridsdill-Smith, 2000; Mastellone et al., 2014).

The other main transformation needed for a multiscale analysis
(e.g., Fedietal, 2009, 2012) is the field differentiation. Field differentia-
tion is widely used to detect the boundary and the horizontal location of
sources, to decrease the interference effect of nearby sources, to empha-
size the effects from shallow sources or as a necessary tool for powerful
interpretative methods (e.g.:, Nabighian, 1972; Thompson, 1982; Reid
et al,, 1990; Salem and Ravat, 2003; Thurston and Smith, 1997; Fedi
and Florio, 2001; Cooper and Cowan, 2003; Fedi et al., 2009).

The easiest way to compute upward continuation and differentiation
of potential fields is performing convolution in the frequency domain
through conventional FFT algorithms. Convolution is an integral trans-
formation, involving the function U to transform and some filter h
performing the transformation itself. Thanks to the convolution theo-
rem (e.g., Bracwell, 2000) convolution is greatly simplified in the fre-
quency domain, since it is reduced to a simple product by the Fourier
transforms of U and h. It may be so performed in three steps: Fourier
transformation of the potential field; its multiplication by a filter opera-
tor; inverse Fourier transformation of such product.

For instance, the level-to-level upward continuation operator in fre-
quency domain is given by (Blakely, 1996):

Fyp = Fe7Ik42 Az>0 )

where |K| is the wavenumber modulus: [k| = 1/k* + kyz, Fis the Fou-

rier transforms of the measured fields U at the altitude z/, F,, is the
Fourier transforms of the upward continued field at the altitude z and
Az is the upward continuation step, Az=z—z'. Although the FFT tech-
nique is very fast and easy to use, there are some problems with this al-
gorithm. The main problem is the aliasing error due to circular
convolution implied in the Fourier domain. It degrades progressively
the low-frequency content of upward continued field as the altitude in-
creases (Oppenheim and Schafer, 1975; Fedi et al., 2012). Besides, as the
Fourier transform inherently assumes that the function is periodic, if
the edges of data are not smooth, the boundaries behave like disconti-
nuities in Fourier transform, and the edge errors are severely intensified
(Oppenheim and Schafer, 1975; Blakely, 1996; Mastellone et al., 2014).
These errors can be overcome to some extent by computing the up-
ward continuation on a larger area than that of the measurements,
or by a windowing technique. If real data are available beyond the in-
terested area, they can be used to the end of enlarging the dataset.
Otherwise, the data must be extended to a larger area by mathemat-
ical extrapolation methods like zero-padding, smooth extension,
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Fig. 1. Typical kernel matrices K of upward continuation. (a) the 2D case. There are 1000 points along the profile and level of continuation is 80 m; (b) the 3D case. The level of continuation
is 20 m and the cell size is 1 m.

symmetric extension or other algorithms. Fedi et al. (2012) gave a
comprehensive description on the different kinds of data expansions
and on their relative accuracy.

One more critical issue with FFT algorithm is its sensitivity to local
high-frequency noise in the dataset. Being the Fourier transforma-
tion a global method, low-pass filtering cannot act locally so that a
general distortion due to the low-pass filtering is generated through
the whole map.

The upward continuation and the differentiation of potential fields
can be however directly performed in space domain. Gibert and
Galdeano (1985) computed first the filter operators in the frequency
domain and then inverse transformed it into the space domain; finally
they computed upward continuation and differentiation by convolution
in the space domain. Due to Fourier and inverse Fourier transforms
during this process, some errors may propagate into the designed
convolution filter, which affect the accuracy of the final results.
Considering that the computational domain is large, Wang (2006)
and Wang et al. (2008) used the spline technique to carry out these
operations. In their way, the integrand is approximated by a spline
at each point. Here, we solve the problem in the space domain by fol-
lowing a different approach. The integral equations of upward con-
tinuation (see Eq. (1)) and vertical differentiation (see Section 1.2)
are discretized and written in a matrix equation form. The trans-
formed field, either the upward continued field or the field deriva-
tive, is computed through the application of a symmetric or anti-
symmetric matrix operator. In order to show the performance of
the proposed approach, we will consider the DEXP transformation
(Fedi, 2007), an imaging method based on upward continuing the
field to a set of altitudes; we will compare the DEXP transformed
fields generated for synthetic and real data by means of FFT and
space-domain algorithms, respectively.

In the following section we will describe our space-domain proce-
dure for upward continuing and differentiating the potential fields.

1.1. Upward continuation of potential fields in space domain

Upward continuation is widely performed in the frequency domain
through the fast Fourier transform (FFT) technique in three steps: Fou-
rier transformation of the potential field, its multiplication by a filter op-
erator, and inverse Fourier transformation of such product. Thanks to
the Convolution Theorem (e.g., Bracwell, 2000), the level-to-level up-
ward continuation (Eq. (1)) is written in frequency domain very easily
as in Eq. (2) and applies to the gravity and magnetic fields and to their
components or derivatives of any order.

It is possible to consider the integral Eq. (1), as a linear matrix equa-
tion that relates the measured field to the upward continued field
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