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A B S T R A C T

I propose an approach for sparse least-squares reverse time migration (LSRTM) using seislets as a basis for
the reflectivity distribution. This basis is used along with a dip-constrained preconditioner that emphasizes
image updates only along prominent dips during the least-squares iterations. These dips can be estimated
from the standard migration image or from the gradient using plane-wave destruction filters or struc-
tural tensors. Numerical tests on synthetic and field datasets demonstrate the benefits of this method for
mitigation of aliasing artifacts and crosstalk noise in multisource least-squares migration.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Least-squares migration (LSM) has been shown to produce
images with better balanced amplitudes, fewer artifacts and better
resolution than standard migration (Dai and Schuster, 2009; Duquet
et al., 2000; Lailly, 1984; Nemeth et al., 1999; Plessix and Mulder,
2004; Tang, 2009; Wong et al., 2011). However, the computational
cost of LSM makes the application of this algorithm prohibitive for
large-scale industrial 3D problems. Morton and Ober (1998) and
Romero et al. (2000) proposed blended source migration where
they blended several shotgathers into one supergather which is
then migrated. This approach, although very effective in reducing
the computational cost, suffers from crosstalk noise which severely
degrades the quality of the migrated image. Later, Dai and Schuster
(2009) and Schuster et al. (2011) extended the blended source migra-
tion technique to multisource least-squares migration and showed
that the crosstalk noise can be mitigated by an iterative migration of
supergathers. Chen et al. (2015) used a structural smoothing opera-
tor (Liu et al., 2010) to smooth the image updates along the local dips
during simultaneous-source LSRTM and showed that artifact-free
images can be obtained by directly migrating the simultaneous-
source data without first deblending them. Xue et al. (2016)
incorporated shaping regularization (Fomel, 2007) into LSRTM and
used structure-enhancing filtering to mitigate the migration artifacts
caused by simultaneous-source or incomplete data.

Besides the computational cost, errors in the migration velocity
model and inadequate physics taken into account by the modeling
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and the adjoint equations hinders the potential of LSRTM to produce
images of superior quality than any other migration algorithm (Dutta
et al., 2014; Dutta and Schuster, 2014). To account for the inaccura-
cies in the migration velocity model, Luo and Hale (2013, 2014) mod-
ified the conventional L2-norm data misfit function used in LSM, i.e.,
instead of minimizing the difference between the predicted and the
observed traces, they minimized their difference after correcting for
non-zero traveltime shifts that were computed using dynamic warp-
ing (Hale, 2013). Hou and Symes (2015a,b) proposed a modification
of the LSRTM algorithm in the subsurface offset domain where they
used an asymptotic inverse of the extended Born modeling oper-
ator and weighted norms in model- and data-spaces to accelerate
the convergence of LSRTM even in the presence of substantial veloc-
ity errors. To account for statics and near-surface velocity errors, an
interferometric LSM approach was proposed by Sinha and Schuster
(2016) who crosscorrelated the reflection events picked from a ref-
erence layer with the traces associated with reflections from deeper
interfaces. After the crosscorrelation, the deeper reflection data get
redatumed to the reference reflector and the effect of statics in the
overlaying layers above the reference reflector get eliminated. The
crosscorrelated data, also referred to as crosscorrelograms, are then
used as the input data for LSM.

Different preconditioning or regularization techniques were also
proposed to mitigate some of the above-mentioned problems related
to LSRTM. For example, Wang and Sacchi (2007) use a cost function for
one way wave-equation based LSM with regularization constraints
for smoothness along offset-domain common image gathers (CIGs)
and reflectivity sparseness in depth. Cabrales-Vargas and Marfurt
(2013) also formulated a regularized least-squares Kirchhoff migra-
tion problem where they used a penalty function that controls the
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amount of roughness in common reflection point gathers (CRPGs).
They used a three-point mean filter in every CRPG to remove the
aliasing artifacts. Total variation regularization based approaches
(Anagaw and Sacchi, 2012; Lin and Lianjie, 2015) have also been used
with LSM to obtain images with sharp interfaces and discontinuities.

Another approach to mitigate the migration artifacts in LSRTM is
to use a change of basis for the reflectivity using Radon and wavelet-
like transforms. Wavelet transforms provide a compact basis for data
decomposition which in turn is useful for formulating efficient signal
processing and depth imaging algorithms. Such transforms usually
exploit the directional properties of an image through the use of
suitable basis functions. They provide a perfect reconstruction of
the parameters after forward and inverse transforms, are efficient to
compute, and use minimal redundancy. Thus, different wavelet-like
transforms such as the digital wavelet transform (DWT), curvelets,
shearlets, etc., are often used in geophysical applications like data
compression, interpolation, data regularization and denoising (Can-
des et al., 2006a,b; Dessing, 1997; Foster et al., 1994; Herrmann et al.,
2009b; Wapenaar et al., 2005). In the context of LSM, Herrmann et al.
(2009a) and Herrmann and Li (2012) used curvelets and Dutta et al.
(2016, 2015) used local-Radon transform as a change of basis for the
reflectivity and demonstrated that with sparsity promoting imaging
techniques, high-quality images can be obtained from LSRTM using
undersampled or noisy data.

Fomel and Liu (2010) introduced the theory of the seislet trans-
form that is more suitable for representing seismic data. They use
basis functions that are aligned along dominant seismic events or
dips. In 2D or 3D, the basis functions from the seislet transform
follow locally linear events obtained from the input data using
local plane-wave destruction filters (Claerbout, 1992; Fomel, 2002).
Through numerical tests, they demonstrated the superior compres-
sion, interpolation and denoising properties of the seislet transform
over the digital wavelet transform. Using the projection onto con-
vex sets (POCS) framework (Abma and Kabir, 2006), a sparsity-based
approach using the seislet transform has been used by Gan et al.
(2015) and Gan et al. (2016b) to interpolate undersampled seismic
data. Seislet transform has also been used with different regulariza-
tion constraints for deblending of simultaneous-source seismic data
(Chen, 2015; Chen et al., 2014; Gan et al., 2016a), for random noise
attenuation (Chen, 2016; Chen et al., 2016, 2015) and for multiple
attenuation (Wu et al., 2016).

The above listed properties of the seislet transform make it an
appealing tool for use in seismic imaging problems such as least-
squares migration (LSM) or full waveform inversion (FWI). In this
paper, I propose using the seislet transform as a change of basis
for the reflectivity during LSRTM. In addition, I also use a dip-
constrained preconditioner which ensures that the image updates
occur only along some pre-estimated dips or slopes. These dips or
slopes are estimated from a standard migration image or from the
gradient using a plane-wave destruction filter. Numerical tests on
synthetic and field data show that this approach can efficiently sup-
press the crosstalk noise in multisource LSM and mitigate the aliasing
artifacts caused by severely undersampled data.

This paper is divided into four sections. After the Introduction, the
second section describes the theory of LSRTM using seislets as basis
functions for the reflectivity. Numerical results on synthetic and field
data are presented in the third section and the conclusions are in the
last section.

2. Theory

Under the single scattering Born approximation, the observed
data, d, can be written as

d = Lm. (1)

Here L is a linearized Born modeling operator that predicts the data
from the reflectivity image, m. In conventional LSM, the reflectiv-
ity m is estimated by minimizing the misfit function, 0(m), given by
(Nemeth et al., 1999)

0(m) =
1
2
(Lm − d)

T (Lm − d) + f (m). (2)

Here f(m) is a regularization term that imposes constraints on the
solution m. If the reflectivity is expressed as a weighted sum of seislet
basis functions (see Appendix), we have

m = Sm̂. (3)

Here S represents the inverse seislet transform and m̂ represents the
seislet coefficients. After this transformation, Eq. (1) can be expressed
as

d = LSm̂, (4)

and the objective function in Eq. (2) gets modified as

0(m̂) =
1
2

(
LSm̂ − d

)T (
LSm̂ − d

)
+ f (m̂). (5)

If the prior model is of zero mean and known variance, then the
regularization term f (m̂) can be expressed as

f (m̂) =
1
2

m̂T C−1
m̂ m̂, (6)

where Cm̂ represents the covariance of m̂. Thus, the objective func-
tion for estimating m̂ is given by

0(m̂) =
1
2

(
LSm̂ − d

)T (
LSm̂ − d

)
+

1
2

m̂T C−1
m̂ m̂. (7)

The gradient of Eq. (7) can be written as

∂0(m̂i)
∂m̂i

= ST LT (
LSm̂i − d

)
+ C−1

m̂i
m̂i, (8)

and the corresponding normal equations are given by

(
ST LT LS + C−1

m̂i
I
)

m̂ = ST LT d. (9)

The matrices ST and S can be implemented using the fast forward-
and inverse-seislet transforms, respectively (Fomel and Liu, 2010).
Hence, the choice of seislet transform as a suitable basis is appealing
for a least-squares migration or full waveform inversion problem
where it is not feasible to explicitly compute and store these
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