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The frequency-dependent seismic anomalies related to hydrocarbon reservoirs have lately attracted wide inter-
est. The diffusive-viscous model was proposed to explain these anomalies. When an incident diffusive-viscous
wave strikes a boundary between two differentmedia, it is reflected and transmitted. The equation for the reflec-
tion coefficient is quite complex and laborious, so it does not provide an intuitive understanding of how different
amplitude relates to the parameters of the media and how variation of a particular parameter affects the reflec-
tion coefficient. In this paper, we firstly derive a two-term (intercept-gradient) and three-term (intercept-gradi-
ent-curvature) approximation to the reflection coefficient of the plane diffusive-viscous wave without any
assumptions. Then, we study the limitations of the obtained approximations by comparing the approximate
value of the reflection coefficient with its exact value. Our results show that the two approximations match
well with the exact solutions within the incident angle of 35°. Finally, we analyze the effects of diffusive and vis-
cous attenuation parameters, velocity and density in the diffusive-viscous wave equation on the intercept, gradi-
ent and curvature terms in the approximations. The results show that the diffusive attenuation parameter has a
big impact on them,while the viscous attenuation parameter is insensitive to them; the velocity and density have
a significant influence on the normal reflections and they distinctly affect the intercept, gradient and curvature
term at lower acoustic impedance.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The amplitude variation with offset/angle of incidence (AVO/AVA)
has been a powerful technique for geoscientists to extract fluid and li-
thology information from the analysis of prestack seismic amplitudes.
When an incident plane wave is injected on a boundary between two
media, it is reflected and transmitted. The theory of solving the prob-
lems of reflection and transmission at an interface is Zoeppritz equa-
tions in elastic media (Zoeppritz, 1919). Zoeppritz equations give
exact values for the amplitudes of the reflected and transmitted plane
waves. However, they do not support an intuitive understanding of
the effects of the variation of a parameter on the seismic amplitudes.
In the past few decades,many linear approximations of Zoeppritz equa-
tions have been derived to give an intuitive relationship between pa-
rameters of media and seismic amplitudes. The first approximation
was obtained by Bortfeld (1961), who linearized the equations by divid-
ing the major subsurface interfaces into a group of layers under the as-
sumptions of small changes in the elastic parameters at the transition
layers. This approximation is valid for all precritical angles. Aki and

Richards (2002) derived a linearized equation for the reflection com-
pressional wave in such a form that comprises three terms involving
density, P-wave velocity and S-wave velocity, for small changes in the
P-wave velocity, S-wave velocity and density across a boundary be-
tween two elasticmedia.Wiggins et al. (1983) derived a rearrangement
of the Aki-Richards approximation in a three-term form including the
intercept, gradient and curvature (intercept-gradient-curvature equa-
tion). Shuey (1985) rearranged the Aki-Richards equation by
transforming the equation derived byWiggins et al. (1983) fromdepen-
dence on Vp, Vs and ρ (the P-wave velocity, S-wave velocity and density,
respectively) to dependence on Vp, ρ, and Poisson's ratio ν. Smith and
Gidlow (1987) obtained another approximation by using Gardner's
velocity-density empirical relationship. Fatti et al. (1994) derived a
three-term approximation including P-impedance, S-impedance and
density, which is much more extensively applied in field data. Gray
et al. (1999) reformulated the Aki and Richards approximation by
using two sets of fundamental constants: λsat, μsat, and ρsat (the first
and second Lamé parameters and density, respectively), and Ksat, μsat,
and ρsat (bulk modulus, shear modulus, and density, respectively).

More recently, Russell et al. (2011) derived a generalized equation
based on Biot-Gassmann poroelasticity theory which contains both of
the Gray parameterizations as special cases. Zhao et al. (2014) derived
the frequency-dependent reflection coefficient based on the diffusive-
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viscous wave equation proposed by Korneev et al. (2004). However, the
reflection coefficient is complicated and does not provide a direct rela-
tionship between the variation of a particular parameter in a medium
and the reflection coefficient.

In this work, we put forward amethod for approximating the reflec-
tion coefficient in diffusive-viscous media. We firstly give the exact ex-
pression of the frequency-dependent reflection coefficient, and we
further derive a two-term (intercept-gradient) approximation and a
three-term (intercept-gradient-curvature) approximation to the reflec-
tion coefficient of plane diffusive-viscouswave. Then,we investigate the
limitations of the approximations by comparing the approximate solu-
tions with the exact solution. Finally, we study the effects of the param-
eters (diffusive and viscous attenuation parameters, velocity and
density) in the diffusive-viscous wave equation on the approximations.

2. The derivation of approximations

In this section, we firstly introduce the diffusive-viscous wave equa-
tion, and give the proved exact equation for the frequency-dependent
reflection coefficient in the diffusive-viscous media. Then, we derive
the approximate equations for the reflection coefficient in order to es-
tablish an intuitive relationship between the parameters of the media
and the amplitude.

2.1. The frequency-dependent reflection coefficient based on the diffusive-
viscous wave equation

The diffusive-viscous wave equation in a 1-D medium is proposed
(Goloshubin and Korneev, 2000; Korneev et al., 2004) and mathemati-
cally described as follows:

∂2u
∂t2

þ γ
∂u
∂t

−η
∂3u
∂x2∂t

−υ2 ∂
2u

∂x2
¼ 0 ð1Þ

where, u is the wave field; γand η is the diffusive and viscous atten-
uation parameter respectively, which are functions of porosity and per-
meability of rocks as well as the viscosity and density of the fluid; υ is
the wave propagation velocity in a non-dispersive medium. t is the
time and x is the space variable. This equation can be extended to a 2-
D case as (He et al., 2008; Zhao et al., 2014)
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When a plane wave is incident on a planar interface that separates
two diffusive-viscous media, the reflection coefficient, R, can be ob-
tained as (Zhao et al., 2014)

R ¼ ρ2V2 cosθ1−ρ1V1 cosθ2
ρ2V2 cosθ1 þ ρ1V1 cosθ2

ð3Þ

where,
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here, ρ1, ρ2, and V1, V2 are the densities and complex velocities of
upper medium 1 and bottom medium 2, respectively. θ1 is the incident
angle and θ2 is the angle of transmission.ω is the angle frequency, and i

¼
ffiffiffiffiffiffiffiffi
−1

p
.

It is found that the Eq. (3) is quite complex and does not provide the
intuitive understanding of the effects of variation of parameters in the
media on the amplitude. In the following, we derive an approximate
equation for Eq. (3).

2.2. The approximations to the frequency-dependent reflection coefficient

In this section, we derive a two-term and three-term approximation
to the reflection coefficient R in Eq. (3). Using the Snell's law, Eq. (3) can
be rewritten as a function of incident angle θ as
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On the basis of Taylor's series expansion (Ahlfors, 1953), we rewrite
the Eq. (5) as

R θð Þ ≈ R0 þ ∂R
∂ sinθ sinθ¼0
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where,

R0 ¼ R sinθ ¼ 0ð Þ ¼ ρ2V2−ρ1V1

ρ2V2 þ ρ1V1
ð7Þ

In Eq. (7), R0 is the value of reflection coefficient for normal inci-

dence; θ is the incident angle; ∂R
∂ sinθ and

∂2R
∂sin2θ

are the first-order and the

second-order derivative of R with respect to sinθ, respectively.
It is obviously noted that the values of odd-order derivatives at

sinθ=0 are zeros as R(θ)is an even function with respect to sinθ. Thus,
the first- and third-order derivatives in Eq. (6) are zeros, that is
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After some complex algebraic operations, we get
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We denote the density and velocity ratios of the bottom medium to
the upper medium as αρ ¼ ρ2

ρ1
and αV ¼ V2

V1
, respectively. Then, the two-

term approximation to the reflection coefficient is obtained from Eqs.
(6)–(9) as
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