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a b s t r a c t

A numerical study of the temporal shallow mixing layers is performed. The depth-
averaged shallow water equations are solved by the finite volume method based on the
Bhatnagar–Gross–Krook (BGK) equation. The filtering operation is applied to the governing
equations and the well-known Smagorinsky model for the subgrid-scale (SGS) stress is
employed in order to present a large eddy simulation (LES). The roll-up and pairing
processes are clearly shown and the corresponding kinetic energy spectra are calculated.
The effects of the Froude number and the bottom friction are numerically investigated. It is
shown that the growth rate of the mixing layer decreases as the Froude number increases,
which is very similar to the compressible mixing layers when considering the effects of the
Mach number. The numerical results also indicate that the increase in bottom friction can
enhance the stability of the flows, which is physically reasonable and consistent with the
theoretical and experimental findings.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Mixing layer flows can be encountered in aerodynamic, atmospheric, oceanic and hydraulic engineering, where the
transverse gradient in the stream-wise velocity makes the flows unstable. The study and understanding of such flows are
both theoretically and practically important. According to the Fjortofts theorem [1], instability of the flow is reached in the
case of an inflection point in the transverse profile of the stream-wise velocity. Kelvin–Helmholtz instabilities can therefore
develop leading to horizontal vortical structures. The wavenumber of the most unstable mode and the growth rate could
be predicted to some extent by linear stability analysis; see for example [2,3]. During the past decades, many experimental
investigations (for example [4–7]) and numerical studies (such as [8–10]) ofmixing layer flows have been carried out, which
give more insights into the flows.
Open-channel flows are the turbulent wall flows with a free surface extending over the full water depth; see for example

[11] for a review of such flows. A shallow mixing layer can be characterized as a combination of a plane mixing layer flow
and an open-channel flow. The flow domain is bounded by a bottom and a free surface and the width of the mixing region
is large compared with the water depth. Physically, the bottom of shallow flows gives two-fold effects, one is the drag force
which tends to damp the flows, and the other is the small-scale turbulence generated near the bottom. Both of them will
affect the horizontal coherent structures. In [12], the spatial shallowmixing layer flowwas studied in detail by experiments,
analytical modeling and numerical simulation.
A two-dimensional temporal mixing layer was numerically studied and analyzed in [13]. In this paper, the temporal

shallow mixing layer flow is investigated by solving the depth-averaged shallow water equations. The filtering operation is
applied to the governing equations and the well-known Smagorinsky model [14] for the subgrid-scale stress is employed
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in order to present a LES. The numerical method used is the BGK-based finite volume method [15,16], which is an explicit
scheme with the second-order accuracy in both time and space.
The rest of the paper is organized as follows. In Section 2, the numerical methodology and the set-up of the problem are

described. The numerical results are discussed in Section 3, and the concluding remarks are given in Section 4.

2. Numerical methodology and problem set-up

The filtered shallow water equations can be written as [17,18]

∂ h̄
∂t
+
∂(h̄ ¯̂ui)
∂xi

= 0, (1)

∂(h̄ ¯̂ui)
∂t
+
∂(h̄ ¯̂ui ¯̂uj + δijgh̄2/2)

∂xj
= −gh̄Sbi +

∂

∂xj
[h̄(ν2 ¯̂S ij − Tij)] −

τ̄ bi

ρ
, (2)

where the hat denotes the depth-averaging operator and the bar represents the filtering operator, i = 1, 2 and j = 1, 2with
1 indicating the streaming direction and 2 indicating the cross-stream direction. h is the water depth and ui is the velocity in
xi direction. g is the gravitational acceleration, Sbi is the slope of the flow bed along xi direction. ν is the kinematic viscosity

of the fluid, δij = 1 when i = j and 0 otherwise. The resolved strain rate tensor
¯̂S ij is defined as

¯̂S ij = (∂ ¯̂ui/∂xj + ∂ ¯̂uj/∂xi)/2.
In Eq. (2), ρ is the fluid density, and τ̄ bi is the shear stress at the bed of the flow along xi direction, which can be modeled by
the quadratic friction law [14]

τ̄ bi = ρcf ¯̂ui
√
¯̂uj ¯̂uj, (3)

where cf is the bed friction coefficient. The subgrid-scale tensor Tij represents stresses acting on the vertical plane over the
entire depth due to the combined effects of filtering and depth integration, which can be expressed as

Tij = ûiuj − ¯̂ui ¯̂uj. (4)

A turbulence model is needed for Tij to close the governing equations. Among various SGS models [19], the simplest and
most widely used eddy-viscosity model is proposed by Smagorinsky in [20], where the eddy viscosity νt is defined by

νt = (Cs∆)2
(
2 ¯̂S ij
¯̂S ij
)1/2

. (5)

This model is employed in our numerical simulation, the Smagorinsky constant Cs is taken as Cs = 0.065 [21] and the filter
width∆ =

√
∆x1∆x2 is adopted.

The filtered shallow water equations are solved by a finite volume method based on the extended BGK equation [15,22].
In this method, the fluxes for the mass and momentum across the surface of the control volume are evaluated from the
solution of the BGK equation. The scheme is explicit and second-order in both time and space. It is well known that the
Navier–Stokes equations can be obtained from the BGK equation in conjunction with the Chapman–Enskog expansion for
low Knudsen number. The direct connection between the unfiltered shallow water equations and the extended BGK model
has been established in [15], where the viscous terms in the shallowwater equations are recovered from the collision term in
the BGKmodel by setting ν = σgh/2with σ the collision time. For the filtered shallowwater equations, if the eddy-viscosity
turbulence model is used for the SGS stress, then the filtered Eqs. (1) and (2) are mathematically equivalent to the classical
unfiltered shallowwater equations by replacing h, ui and ν by h̄, ¯̂ui and ν+νt , respectively. Thus the BGK-based finite volume
method can apply to solve the filtered shallow water equations directly [17]. Detailed derivation and an in-depth analysis
of the BGK model for shallow water flows can be found in [15,23].
It should be noted that the BGK-based schemes have beendeveloped and applied to awide range of flowproblems besides

the free surface flows, such as the compressible flows [24], near incompressible flows [25], rarefied gas [26] and microscale
gas [27] flows. One of the distinguished features for the BGK-based method is that it does not require the operator splitting
of the advection and diffusion (both molecular and turbulent) terms, which may be problematic in some circumstances, see
for example [28,29]. An interested reader may refer to [30] for a general review of the BGK-based schemes.
The set-up of the problem is given as follows. The gravitational acceleration is taken as g = 9.8 ms−2 and the slopes of

the flow bed are assumed to be zero, i.e. Sb1 = S
b
2 = 0. The initial mean velocity is given by

u1 = U tanh
(
2x2
δi

)
ms−1, u2 = 0, (6)

which yields u1 = U ms−1 for x2 = +∞ and u1 = −U ms−1 for x2 = −∞. The vorticity thickness δ at any time is defined
by

δ(t) = 2U/
[
∂ ũ1(t, x2)
∂x2

]
max

, (7)
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