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A B S T R A C T

With developments in instrumentation and computational resources, the collection of large, non-
conventional DC resistivity datasets has become commonplace. While the increased data content of these
large datasets can significantly improve the resolution of inverse models, these datasets also present chal-
lenges for standard data quality control (QC) methodologies. Standard QC methodologies for DC resistivity
datasets typically rely on our ability to decompose the dataset into 2D lines and/or reciprocal measure-
ments. Non-conventional electrode geometries and the cost of collecting a large number of reciprocal
measurements can severely limit the applicability of standard DC resistivity QC methodologies.
To address these limitations, we developed a more generalized data QC methodology which utilizes statisti-
cal analysis and classification tools. The merit of this methodology is illustrated using a field dataset collected
in an underground potash mine and several synthetic examples. Results from these applications show that
the methodology has the ability to identify and characterize highly noise-contaminated data from a number
of different sources. The flexibility of the 4-stage methodology allows it be tailored to accommodate data
from any type of DC resistivity survey and the use of statistical analysis and classification tools decreases
the subjectivity of the process. Although this study focuses on the applicability of this methodology for DC
resistivity data, it is potentially applicable to a variety of geophysical surveys.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Despite the many advances in multi-channel instrumentation
systems, survey design optimization, and inversion techniques, large
DC resistivity datasets can still be difficult to work with due to limita-
tions of standard data quality control (QC) methodologies. Identify-
ing and dealing with highly noise-contaminated or inconsistent data
is a vitally important part of the inversion process since it informs our
choice of measurement uncertainties. These uncertainties define the
relative importance or weight of each measurement. Standard tools
for data QC include 2D pseudo-section plots of apparent resistivity
and repeat or reciprocal measurements.

With 2D profiles, a pseudo-section of the apparent resistivities
is typically plotted to highlight spurious or noise-contaminated data
associated with a specific electrode (Deceuster et al., 2013; Edwards,
1977). Since the apparent resistivity is expected to vary smoothly
in most circumstances, spurious data can be identified by small,
anomalous regions of high or low apparent resistivity (Loke, 2000).
Similarly, conventional 3D surveys, which consist of a regular grid of
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electrodes, are typically decomposed into 2D profiles so that pseudo-
sections can be easily plotted (Auken et al., 2006). However, when
working with large non-conventional 3D datasets, plotting a map or
pseudo-section of the data is not straightforward or meaningful. Data
with very different electrode geometries can plot in similar locations
making it difficult to identify patterns associated with inconsistent
or noisy data.

Repeat and reciprocal measurements have been shown to be a
useful tool for assessing the noise levels of DC resistivity datasets
by several previous studies including LaBrecque et al. (1996), Slater
et al. (2000), Zhou and Dahlin (2003), LaBrecque and Daily (2008)
and Wilkinson et al. (2012). Repeat measurements are made any-
time that the same transmitter (TX) and receiver (RX) locations are
reoccupied, while reciprocal measurements are made when the TX
and RX locations are interchanged. A formal proof of the reciprocity
theorem for DC resistivity, assuming an arbitrary conductivity model,
is given by Parasnis (1988). Reciprocal measurements provide a more
reliable estimate of measurement noise levels since they account for
some systematic error sources which can go undetected by repeat
measurements (LaBrecque et al., 1996).

While reciprocal measurements are certainly a valuable tool for
assessing the noise level of DC resistivity datasets and identifying

http://dx.doi.org/10.1016/j.jappgeo.2016.09.018
0009-2541/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jappgeo.2016.09.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jappgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2016.09.018&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2016.09.018


164 M. Mitchell, D. Oldenburg / Journal of Applied Geophysics 135 (2016) 163–182

noise-contaminated measurements a full set of reciprocal measure-
ments is not always collected. In large distributed array systems,
such as Quantec’s Titan 24 system, a dense grid of RXs is laid out and
the TX is moved through the grid between the RXs. Since the RX loca-
tions are never occupied by the TX, no reciprocal measurements are
collected with this setup. In other scenarios, limited budgets and a
desire to maximize the data content of the survey prohibits the col-
lection of a large number of reciprocal measurements. If a large non-
conventional 3D dataset lacks sufficient reciprocal measurements,
other methods must be employed to QC highly noise-contaminated
data.

1.1. Inversion background

After initial efforts to quality control the data and remove clear
outliers, the data are input into an inversion algorithm to find a
geologically reasonable conductivity model which acceptably repro-
duces the data. Since the inverse problem is typically very under-
determined, (i.e. there are far more model cells than data), we pose it
in a regularized optimization context as the minimization of a global
objective function (V). The inverse problem is solved by finding an
estimate of the true model (m̂), which minimizes the model objective
function (Vm), while driving the data misfit (Vd) to its target level
(V∗

d). This minimization problem can be formalized in the following
manner.

minV = Vd + bVm

s. t. Vd ≤ V∗
d (1)

where b is a regularization parameter that controls the relative
importance of the model objective function, which controls the com-
plexity and smoothness of the model, and the data misfit. To obtain
a meaningful solution to the inverse problem we need to choose a
metric by which to measure the data misfit, assign reasonable uncer-
tainties to each measurement, and define a target misfit to quantify
an acceptable data fit (Oldenburg and Li, 2005).

Data misfit provides a quantitative measure of the difference
between the observed data (dobs) and the predicted data (dpred)
derived through numerical modelling. The data are normalized
potentials or resistance values which are computed by dividing the
measured potential differences (VMN) by their injection currents (I).
An Lp norm is typically used for this metric with the L2 being the most
commonly used and the L1 norm sometimes employed to better han-
dle outliers. Here we use a standard L2 formulation for the data misfit
(Vd).

Vd =
n∑

i=0

(
dobs

i − dpred
i

ni

)2

=
∥∥∥Wd

(
dobs − dpred
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2
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where n are the standard deviations of the data which quantify mea-
surement uncertainty. The data weighting matrix Wd is a diagonal
matrix with 1/n on the main diagonal. Since these standard devia-
tions are typically unknown, we must estimate these uncertainties,
which account for discrepancies between the observed and predicted
data. These uncertainties are often referred to as the noise model.

Developing a accurate noise model is challenging since many
factors contribute to measurement uncertainty and each has differ-
ent underlying statistical distributions. To capture the cumulative
effect of the various factors in a single distribution, we assume that
the noise is uncorrelated and Gaussian. Under these conditions, the
target misfit is given by the expected value, which equals the num-
ber of data, provided uncertainties have been assigned reasonably.
While these assumptions are almost certainly incorrect, they have
served researchers well. As per common practice the uncertainties

are assigned as a percentage of each measurement plus a floor value,
which is often dependent on the magnitude of survey measurements
and the instrument precision.

To control the complexity of the recovered model, the following
formulation for the model objective function (Vm) is used.

Vm =
∥∥Ws(m − mo)

∥∥2
2 +

3∑
i=1

∥∥Wim
∥∥2

2 (3)

Where the first term controls the “smallness” of the model (i.e.
how close the current model (m) is to the reference model (mo)) and
the summation contains directional derivative terms which control
the smoothness of the model in each direction. Ws is a diago-
nal matrix containing cell weights while the three components of
Wi (Wx, Wy, and Wz) combine finite difference operators and face
weight vectors in each direction.

The optimization problem is solved iteratively using a Gauss–
Newton based approach, where at each b iteration the model update
is estimated using an incomplete preconditioned conjugate gradient
solver. The initial b is chosen to be sufficiently large so that the Vm

dominates the objective function (Haber et al., 2004). b is then itera-
tively cooled with each iteration, placing more emphasis on reducing
Vd by allowing more structure to be incorporated into the model.

For additional information on geophysical inversion we refer the
reader to the following books: Menke (1989), Parker (1994), Aster et
al. (2012), and Haber (2014). Oldenburg and Li (2005) provide a gen-
eral overview of geophysical inversion in their tutorial while Li and
Oldenburg (1994), LaBrecque et al. (1996), Loke and Barker (1996),
Ramirez et al. (1996), and Loke et al. (2013) are a few of the many
papers which specifically discuss the inversion of DC resistivity data.

After inverting, data misfit plots are used to examine how well
the recovered model fits the data. A global misfit (Vd) close to the
target misfit indicates that there is good overall agreement between
the observed and predicted data. Looking at the distribution of indi-
vidual data misfits can help identify clear outliers and provides an
estimate of how many data have individual data misfits greater than
the target misfit of 1. If the recovered model does a poor job of fitting
the observed data then further data quality control (QC) analysis is
required.

1.2. A new data QC methodology

The limitations of standard data QC tools prompted us to develop
a new methodology which combines a search for correlations
between high misfit data and various survey parameters with stat-
ical analysis and classification tools to identify noise sources and
deal with highly noise-contaminated and inconsistent data. Graph-
ically this search for correlations can be done using a series of
survey parameter cross-plots. However, this type of manual multi-
variate analysis is difficult since there are many parameter spaces to
explore. Boxplots, SVD analysis, and k-Means clustering (MacQueen,
1967) are used to semi-automate this procedure and reduce the
subjectivity of the process.

The data quality control methodology presented, is potentially
applicable to a variety of field surveys. Here we test it in an under-
ground environment with DC resistivity data. We find that a combi-
nation of a few poor electrodes and current leakage problems within
the cables, that connect electrodes, have conspired to generate a
highly noise-contaminated dataset. Despite the highly contaminated
nature of the dataset, we are able to use the outlined data QC
methodology to identify a subset of reliable data for inversion and
obtain an interpretable inversion model.

In this paper, we open with a description of the case history,
which provided the impetus for this research, and then present the
4-stage data QC methodology in the context of the case history.
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