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The prestack amplitude variation with angle (AVA) inversion method utilising angle information to obtain the
elastic parameters estimation of subsurface rock is vital to reservoir characterisation. Under the assumption of
blocky layered media, an AVA inversion algorithm combining prestack spectral reflectivity inversion with sparse
Bayesian learning (SBL) is presented. Prior information of the model parameters is involved in the inversion
through the hierarchical Gaussian distribution where each parameter has a unique variance instead of sharing
a common one. The frequency-domain prestack SBL inversionmethod retrieves sparse P- and S-wave impedance
reflectivities by sequentially adding, deleting or re-estimating hyper-parameterswithout pre-setting the number
of non-zero P- and S-wave reflectivity spikes. The selection of frequency components can help get rid of noise
outside the selected frequency band. The precondition of the parameters helps to balance the weight of different
parameters and incorporate the relationship between those parameters into the inversion process, thus improves
the inversion result. Synthetic and real data examples illustrate the effectiveness of the method.
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1. Introduction

The amplitude variation with angle (AVA) inversion method
utilising angle information to obtain the elastic parameters of subsur-
face rock plays a critical role in reservoir characterisation. Migrated
prestack seismic data can be transformed into the angle domain as
AVA data. Parameters such as P-wave velocity, S-wave velocity and
density are then inverted, leading to an AVA inversion problem. AVA
inversion in the time domain, which is commonly used, utilises all the
frequency information of seismic data. However, information outside
~5 Hz to ~100 Hz in seismic data is relatively inaccurate. The
frequency-domain AVA inversion in this paper has an optional frequen-
cy range, which can flexibly utilise dominant information and get rid of
noise outside the chosen frequency band.

For the sake of non-uniqueness, regularisation in most inversion
applications is required to select an optimum model amongst many
possible solutions and integrate priori information into the inversion
process (e.g., Yuan et al., 2015). In the context of AVA inversion,
stabilising inversion algorithms and reducing non-uniqueness with
regularisation are also important. Sparse constraint is often chosen to
be the regularisation term as sparse solutions are synonymous with
high-resolution solutions (Levy and Fullagar, 1981; Alemie and Sacchi,
2011). Therefore, various penalty terms of sparse constraint, such as
L1 norm, Cauchy criterion or Huber criterion, have been adopted into

the nonlinear objective function by previous researchers (e.g., Levy
and Fullagar, 1981; Sacchi et al., 1994; Sacchi, 1997; Zhang and
Castagna, 2011; Yuan et al., 2016) to promote a sparse reflectivity esti-
mate. Under the Bayesian framework, the sparse constraint is involved
by prior information of model parameters. To obtain a sharp boundary,
Theune et al. (2010) analysed two priormodels for blocky inversion and
found that the differentiable Laplace distribution defines a convex
function, whereas the Cauchy distribution does not. Alemie and Sacchi
(2011) introduced the trivariate Cauchy distribution which can
incorporate correlations between model parameters into the Bayesian
inversion and lead to a high-resolution result, but does not allow for
computing errors. Under the assumption of blocky layered media, we
integrate the prior information of model parameters flexibly into the
inversion by a parameterised Gaussian distribution. The hyper-
parameters in the priori information which are regarded as specific
values inspire sparseness (Wipf and Rao, 2004).

Many methods are presented to solve the AVA inversion problem,
such as gradient projection for sparse reconstruction (Figueiredo et al.,
2007), fast iterative shrinkage-thresholding algorithm (FISTA) (Beck
and Teboulle, 2009), basis pursuit (Zhang and Castagna, 2011) and
hybrid FISTA least-squares (FISTA + LS) strategy (Pérez et al., 2013).
The current study adopts sparse Bayesian learning (SBL) to solve the
AVA inversion problem. SBL is proposed and proven to be an effective
and accurate method for regression and classification problems
(Tipping, 2001). The SBL paradigm performs parameter learning via
type-II maximum likelihood or evidence maximisation (Mackay,
1992), in which marginal likelihood maximisation leads to automatic
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identification of the relevant kernels and makes the model sparse. The
SBL model has numerous advantages, such as probabilistic prediction,
utilisation of arbitrary basis functions and automatic estimation of
nuisance parameters. This model is successful in a wide range of appli-
cations, such as image processing (Demir and Ertürk, 2007), positron
emission tomography (Peng et al., 2008) and dynamic light scattering
(Nyeo and Ansari, 2011). The application of SBL in seismic data, which
was introduced by Yuan and Wang (2013), is to identify thin beds
below tuning thickness and highlight the stratigraphic boundaries for
poststack seismic data under the blocky layer assumption.

When dealing with the correlation amongst parameter sets
(Gardner et al., 1974; Castagna et al., 1985; Potter and Stewart, 1998),
Alemie and Sacchi (2011) incorporated the relationship amongst
model parameters by scale matrix in the prior distribution to replace
the role of covariance matrix and link small-weight parameters with
large-weight parameters. Zong et al. (2012) adopted decorrelation by
the eigenvector analysis of the covariance matrix to stabilise the
inversion process. The present study also adopts a preconditionmethod
to improve the estimation of model parameters.

The remainder of this paper is organised as follows. Firstly, we
describe the related theories, including the AVA spectral reflectivity
forward model and the SBL inversion method. Secondly, we use
synthetic and field data examples to test the performance of our
method. Finally, several conclusions are drawn.

2. Theory

The reflection and transmission coefficients on the boundary
between two media changing with different incident angles can be
commonly described by the Zoeppritz equation (Zoeppritz, 1919).
However, such a description is computationally complex for the AVA
inversion of prestack seismic data because of its nonlinear form. For
this reason, different linear approximations of the Zoeppritz equation
are developed for AVA analysis (e.g., Aki and Richards, 1980; Shuey,
1985; Fatti et al., 1994). The ultimate goal of AVA inversion is to delin-
eate the distributions of lithology and liquid, as well as convert the
inverted parameters to the lithology and liquid indicators. Hence, the
approximations of the Zoeppritz equation should be selected carefully
to reduce accumulative transformation error and enhance the stability
of the inversion process (Zong et al., 2012). Fatti's approximation
(Fatti et al., 1994) is adopted in the current study because of three rea-
sons: 1) The posterior probability density inferred in themodel space is
maximally decoupled amongst P-wave impedance, S-wave impedance
and density, with the largest error on the density parameter (Debski
and Tarantola, 1995; Rabben et al., 2008), and the coefficient matrix of
these three parameters has a relatively small condition number.
2) The parameter set can be readily converted to common lithology
and liquid indicators (e.g., VP/VS, μρ, λρ), which have good capabilities
for lithology and fluid identification in a wide range. 3) Considering
that the large-angle information of prestack data is difficult to acquire
and has poor quality, estimation of density term is often deceptive,
and hence affects the estimation of the first two terms. However,
when Fatti's approximation is adopted, if necessary, the density
term can be excluded from inversion process without sacrificing
much accuracy.

Fatti's approximation (Fatti et al., 1994) is

RPP θð Þ ¼ 1þ tan2θ
� �

RIP=2− 4γ2 sin2θRIS þ 4γ2 sin2θ− tan2θ
� �

Rρ=2; ð1Þ

where RIP, RIS and Rρ are the P-wave impedance, S-wave impedance and
density reflectivities at interface, γ represents the ratio of S-wave
velocity to P-wave velocity and θ is the incident angle. The equation
can be written in a matrix/vector form as

RPP θð Þ ¼ A θð Þ B θð Þ C θð Þ½ � RIP RIS Rρ½ �T ; ð2Þ

where A(θ)=(1+tan2θ)/2, B(θ)=−4γ2sin2θ, C(θ)=(4γ2sin2θ−
tan2θ)/2 and the superscript T represents transpose. This form can be
regarded as the linearlyweighted superposition of the three parameters
and the corresponding weights A(θ), B(θ) and C(θ). A prestack spectral
reflectivity forward model is then obtained by taking the Fourier
transform for both sides of Eq. (2) as

~RPP θð Þ ¼ F A θð Þ B θð Þ C θð Þ½ � RIP RIS Rρ½ �T ; ð3Þ

where F ¼
expð−i2πt1 f 1Þ expð−i2πt2 f 1Þ ⋯ expð−i2πtK f 1Þ
expð−i2πt1 f 2Þ expð−i2πt2 f 2Þ ⋯ expð−i2πtK f 2Þ

⋮ ⋮ ⋮ ⋮
expð−i2πt1 f MÞ expð−i2πt2 f MÞ ⋯ expð−i2πtK f MÞ

2
664

3
775

represents the discrete version of the Fourier transform, fm(m=
1,2, 3, ⋯ ,M) are the frequencies we select within the limited
band, tk(k=1, 2, 3, ⋯ ,K) are the time sample, ~RPP is the Fourier
spectrum of the time-domain P-wave reflectivity that can be ob-
tained by using S(f)/W(f) or the spectrum of the deconvolution
result, S(f) represents the Fourier spectrum of seismic angle
data and W(f) represents the Fourier spectrum of the correspond-
ing angle wavelet, AðθÞ ¼ diag Aðt1; θÞ Aðt2; θÞ ⋯ AðtK ; θÞ½ �, BðθÞ ¼
diag Bðt1; θÞ Bðt2; θÞ ⋯ BðtK ; θÞ½ �, CðθÞ ¼ diag Cðt1; θÞ Cðt2; θÞ ⋯½
CðtK ; θÞ�, RIP ¼ RIPðt1Þ RIPðt2Þ ⋯½ RIPðtKÞ�, RIS ¼ RISðt1Þ RISðt2Þ ⋯½
RISðtKÞ�, Rρ ¼ Rρðt1Þ Rρðt2Þ ⋯ RρðtK Þ½ � and diag[⋯] represents the
diagonal matrix. If N angle gathers, i.e., θ∈ θ1 θN½ �, exist, we have

~R PP θ1ð Þ~RPP θ2ð Þ⋮~RPP θNð Þ
h i

¼
F 0 ⋯ 0
0 F ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ F

2
664

3
775

�
A θ1ð Þ B θ1ð Þ C θ1ð Þ
A θ2ð Þ B θ2ð Þ C θ2ð Þ

⋮ ⋮ ⋮
A θNð Þ B θNð Þ C θNð Þ

2
664

3
775
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RT
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RT
ρ

2
64

3
75; ð4Þ

For simplicity, when the noise is considered, the equation is
rewritten in the following matrix/vector form:

dM�N ¼ GM�N�3Km3K þ n; ð5Þ

where d ¼ ~R PPðθ1Þ~RPPðθ2Þ⋯~RPPðθNÞ
h iT

is the angle data vector, m ¼
RIP RIS Rρ½ �T is the parameter vector and n is the noise vector.

In order to balance the weight of different parameters and consider
the relationship amongst such parameters, we build the precondition
matrix in two steps. Firstly, we compose the precondition matrix as

W1 ¼
λ1 � I 0 0
0 λ2 � I 0
0 0 λ3 � I

2
4

3
5 to balance the weights of different

parameters, where I is the identity matrix and λi(i=1,2, 3) are
different precondition coefficients for RIP, RIS and Rρ respectively.
Secondly, the relationship amongst parameters are introduced by
covariance analysis, i.e., adding the covariance of each two different
parameters to the precondition matrix, to achieve the final pre-

condition matrix W ¼
λ1 � I ε � covRIPRIS � I ε � covRIPRρ � I

ε � covRIPRIS � I λ2 � I ε � covRISRρ � I
ε � covRIPRρ � I ε � covRISRρ � I λ3 � I

2
4

3
5,

where cov represents the covariance of two different parameters
and ε is the normalisation coefficient. The choice of λi(i=1,2,3) is
according to the available well-log data or the rule of thumb if
there are no well-log data available. The choice of ε is according to
trial and error. Then, if we define GM ⁎N×3K′=GM ⁎N×3KW3K×3K and
m3K′=W3K×3K

−1 m3K, hence Eq. (5) becomes

dM�N¼G0
M�N�3Km

0
3K þ n: ð6Þ
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