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We develop the general rectangular grid discretization based time-space domain high-order staggered-grid
finite-difference (SGFD) methods for modeling three-dimension (3D) scalar wave propagation. The
proposed two high-order SGFD schemes can achieve the arbitrary even-order accuracy in space, and the
fourth- and sixth-order accuracies in time, respectively. We derive the analytical expression of the high-
order FD coefficients based on a general rectangular grid discretization with different grid spacing in all
axial directions. The general rectangular grid discretization makes our time-space domain SGFD schemes
more flexible than the existing ones developed on the cubic grid with the same grid spacing in the axial di-
rections. Theoretical analysis indicates that our time-space domain SGFD schemes have a better stability
and a higher accuracy than the traditional temporal second-order SGFD scheme. Our time-space domain
SGFD schemes allow larger time steps than the traditional SGFD scheme for attaining a similar accuracy,
and thus are more efficient. Numerical example further confirms the superior accuracy, stability and
efficiency of our time-space domain SGFD schemes.
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1. Introduction

Currently, thefinite-difference (FD)method has beenwidely used in
seismic forwardmodeling (e.g., Song and Fomel, 2011; Song et al., 2013;
Tan and Huang, 2014a), seismic imaging (e.g., Dai and Schuster, 2012;
Tan and Huang, 2014b) and seismic inversion (e.g., Shipp and Singh,
2002; Virieux and Operto, 2009). The early FD methods (e.g., Kelly
et al., 1976; Virieux, 1984, 1986) adopted the low-order FD operator
to discretize the spatial and temporal derivatives respectively, and
only achieved the second-order accuracy in both time and space. The
low-order FD schememakes the simulation result suffer from great nu-
merical dispersion. Levander (1988) kept the temporal second-order FD
discretization and improved the spatial accuracy to fourth-order by using
a longer stencil length. The spatial fourth-order FD scheme achieves a bet-
ter tradeoff between accuracy and efficiency, and thus becomes a favored
tool for modeling seismic wave propagation (e.g., Robertsson et al., 1994;
Graves, 1996; Moczo et al., 2000). The spatial accuracy is further im-
proved by using higher-order FD operators (e.g., Holberg, 1987;
Fornberg, 1987; Chu and Stoffa, 2012; Dong et al., 2013).

Although the arbitrary even-order accuracy in space has been
achieved by increasing the spatial FD stencil length, the temporal

second-order discretization is still popular, because of its relatively
low requirements of memory storage. For the standard temporal
second-order FD discretization scheme, one usually has to adopt a
small time step to suppress temporal dispersion during long distance
wave propagation. To improve the temporal approximation accuracy
without significantly increasing the memory storage requirement,
Dablain (1986) developed a temporal fourth-order acoustic FD
modeling scheme by applying the Lax–Wendroff approach (Lax and
Wendroff, 1964). Crase (1990) adopted a similar approach to develop
an elastic FD modeling scheme which is accurate to arbitrary order in
both space and time. Blanch and Robertsson (1997) proposed the
Lax–Wendroff approach based FD method for modeling anelastic
wave propagation. Chen (2011) discussed the stability of the
Lax–Wendroff approach based temporal fourth-order FD method.
The Lax–Wendroff approach based FD methods achieve the high-
order temporal accuracy by replacing the high-order temporal
derivatives with the spatial derivatives using the wave equation.
However, the FD methods involve expensive calculations of high-
order spatial derivatives. Moreover, the mentioned FD methods
are only up to the tenth-order accuracy in space.

The newly developed time-space domain FD methods can achieve
both temporal and spatial high-order accuracies by determining the
FD coefficients from the dispersion relation (e.g., Liu and Sen, 2009;
Liu et al., 2014; Fang et al., 2014). Depending on the adopted approach
for calculating the FD coefficients, the time-space domain FD methods
can be further classified into two categories, the Taylor-series expansion
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(TE) basedmethods (e.g., Tan andHuang, 2014a; Liu and Sen, 2009) and
optimization based methods (e.g., Tan and Huang, 2014c; Wang et al.,
2014; Chen et al., 2015; Chen et al., 2016). The optimized FD methods
can attain a better accuracy than the TE based methods, but require
extra computational efforts for optimizing the FD coefficients. The
coefficients of the time-space domain FD methods are velocity
dependent, which results in separated optimization for each distinct
velocity in heterogeneous media. Contrarily, the coefficients of the
TE based FD methods are expressed analytically. The computational
cost for determining the TE based coefficients is smaller than that
for determining the optimized coefficients. Liu and Sen (2013)
developed a TE based time-space domain FDmethodwith same arbi-
trary even-order accuracy in space and time by adopting new FD
stencils, however, they only discussed the 2D modeling problem,
and did not derive the analytical expressions of the FD coefficients.
Tan and Huang (2014a) proposed the TE based spatial 2M-th-order,
temporal 4th- and 6th-order SGFD methods, denoted by (2M, 4)
and (2M, 6), respectively. They derived the analytic expressions of
the FD coefficients in both 2D and 3D.

Although various time-space domain FD methods have been pro-
posed to improve computational efficiency of seismic wave model-
ing, most of them are based on a square or cubic grid discretization
with equal grid spacing in all axial directions (e.g., Tan and Huang,
2014a; Wang et al., 2014). However, for modeling seismic wave

propagation in some special geological bodies, e.g., the models con-
taining thin layers but much longer in width, a general rectangular
gird discretization with unequal horizontal and vertical grid spacing is
particularly useful for reducing memory requirement and computational
cost. Moreover, for modeling some boundary conditions, e.g., the free
surface boundary condition, a denser sampling in the vertical direction
than the horizontal direction is necessary (e.g., Kosloff et al., 1990;
Mittet, 2002). Inspired by thismotivation, we assume in this paper a gen-
eral rectangular grid discretizationwithunequal grid spacing in each axial
direction, and develop the (2M,2N,2L,4) and (2M,2N,2L,6) SGFD
schemes to simulate 3D scalar wave equation, where 2M, 2N, and 2L
represent the stencil lengths in the x-, z-, and y-axial directions respec-
tively in the 3D Cartesian coordinate space. Accordingly, the traditional
SGFD scheme with the temporal second-order accuracy is denoted by
(2M,2N,2L,2).

The paper is organized as follows. We first introduce the tempo-
ral fourth-, sixth-order, and spatial arbitrary even-order SGFD
discretization of the first-order spatial derivatives on a general
rectangular grid. Then, we derive the analytical expressions of the
FD coefficients using the TE approach. Next, we discuss the stability
conditions, conduct an accuracy analysis, and theoretically compare the
computational cost of our (2M, 2N, 2L,4) and (2M,2N, 2L, 6) SGFD
schemes with the traditional (2M,2N, 2L,2) scheme. This is followed
by numerical examples. Finally we draw some conclusions.

2. Material and methods

The velocity-pressure formulation of scalar wave equation is given by

∂p
∂t

þ K∇ � v ¼ 0;

∂v
∂t

þ 1
ρ
∇p ¼ 0;
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where ρ(x) is the density, K(x)=ρ(x)v2(x) is the bulk modulus, v(x) represents velocity, p(x,t) represents the pressure, v=[vx(x, t),vy(x, t),vz(x, t)]T

denotes the particle velocity vector, x=(x,y,z) represents 3D Cartesian coordinate system, and t denotes time.

2.1. Time-space domain discretization of first-order spatial derivatives

2.1.1. The (2M, 2N, 2L, 4) discretization scheme
The temporal fourth-order and spatial sixth-order SGFD stencil for discretizing ∂/∂x is depicted in Fig. 1, where 8 off-axial grid points are included

in the stencil. If onewants to achieve a higher-order spatial accuracy, one needs to includemore grid points in the difference direction. Generally, the
temporal fourth-order and spatial arbitrary even-order discretization of the first-order derivatives at the position of (0,0,0) leads to (Tan and Huang,
2014a)

∂p0;0;0
∂x

≈
1
hx

XM
m¼1

cxm;0;0 pm−1
2;0;0

−p−mþ1
2;0;0

� �
þ cxy1;1;0 p1

2;1;0
−p−1

2;1;0
þ p1

2;−1;0−p−1
2;−1;0

� �
þcxz1;0;1 p1

2;0;1
−p−1

2;0;1
þ p1

2;0;−1−p−1
2;0;−1

� �
8>><
>>:

9>>=
>>;; ð2Þ

Fig. 1. Illustration of the temporal 4th-order and spatial 6th-order discretization of ∂/∂x in 3D.
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