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This paper presents a conjugate gradient (CG)method for accurate and robust downward continuation of poten-
tial field data. Utilizing the Block-Toeplitz Toeplitz-Block (BTTB) structure, the storage requirement and the com-
putational complexity can be significantly reduced. Unlike the wavenumber domain regularization methods
based on fast Fourier transform, the BTTB-based conjugate gradient method induces little artifacts near the
boundary. The application of a re-weighted regularization in a space domain significantly improves the stability
of theCG scheme for noisy data. The synthetic datawith different levels of addednoise and realfield data are used
to validate the effectiveness of the proposed scheme, and the computed results are compared with those based
on recently proposedwavenumber domain methods and the Taylor series method. The simulation results verify
that the proposed scheme is superior to the existing methods considered in this study in terms of accuracy and
robustness. The proposed scheme is a powerful computational tool capable of applications for large scale data
with modest computational cost.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Downward continuation is frequently applied to enhance the poten-
tial field data. It provides geological information at low elevation by
using the field data from high elevation. In recent years, as the aero-
gravity and magnetic surveys becomemore widely used in prospecting
(Zhang et al., 2015), it is desirable to develop efficient and robust down-
ward continuation methods to deal with large amounts of aero-
potential field data. According to the physical law, the potential field
data at higher elevation contains dim geophysical information, which
makes the data less valuable. The potential field data can be enhanced
by using a downward continuation technique, such that the potential
field at lower elevation or even underground within the harmonic
source-free region (Pašteka et al., 2012) can be effectively estimated.

In the wavenumber domain (Fourier spectral domain), the continu-
ation can be carried out by multiplying a continuation factor with the
spectrum of the observation data. Unfortunately, the downward contin-
uation factor grows rapidly as the continuation distance increases. The
high frequency components including noise in the observation data
will be amplified and thus resulting a severe polluted solution.
Therefore, using downward continuation in a wavenumber domain is
an inherently unstable process. Using appropriate filters or constrains,
stable downward continuation can be constructed. Dean (1958)) pro-
posed a method to constrain the high frequency components. The use
of a Wiener filter is investigated in Clarke (1969) and Pawlowski
(1995). Recently, Pašteka et al. (2012) propose a robust wavenumber

domainmethodwhere the filter is designed based on the characteristics
of Tikhonov regularization, Zeng et al. (2013) use an adaptive iterative
Tikhonov method to apply a Tikhonov filter in each iteration in a wave-
number domain. The advantage of a wavenumber domain method is
that the downward continuation process can be accelerated by fast
Fourier transform (FFT). It has been proved that an appropriate
designed filter can guarantee the accuracy and stability of downward
continuation even for noisy data (Pašteka et al., 2012; Zeng et al., 2013).

Another type of downward continuation method is based on the
Taylor expansion, where the potential field at one elevation can be ex-
panded by the potential field and its vertical derivative terms at another
elevation. The success of the Taylor seriesmethod depends on the accura-
cy and stability in computing the vertical derivative terms. Fedi and Florio
(2002, 2001) propose the ISVD method, where the odd vertical deriva-
tives can be computed in a stable way, and the even order vertical deriv-
ative can be efficiently computed by finite difference. Zhang et al. (2013)
propose a truncated Taylor series iterative scheme to achieve robust and
stable downward continuation. Ma et al. (2013) compute the downward
continuation by adding an upward continuation and a second vertical
derivative at the observation plane, and the scheme can also be converted
to an iterative version. The Taylor series method is capable of providing
very accurate solution when the data are relatively clean, moreover the
iterative Taylor series method usually has a fast convergence rate.

It should be noted that both the wavenumber domain methods and
the Taylor series methods can be accelerated by FFT. However, the FFT
itself inherently introduces an artifact, and the FFT-induced artifact
can be seen in many existing methods, this is particularly obvious in
some iterative wavenumber domain methods (Zeng et al., 2013). The
FFT-induced error in the downward continuation process has already
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been studied by researchers in Trompat et al. (2003); Cooper (2004);
and Pašteka et al. (2012). To resolve the difficulty, either extrapolation
is needed to extend the original data (Pašteka et al., 2012), or a smaller
window should be used to exclude the results near the boundary. For
the Taylor series methods, besides the FFT-induced error, another prob-
lem is the robustness for the noisy data. Although the ISVD method
(Fedi and Florio, 2002; Fedi and Florio, 2001) can be applied to compute
the odd derivatives in a stable way, the even derivatives are still com-
puted by the standard finite difference which is sensitive to the noise.
Another iterative method such as that based on Taylor series has a sim-
ilar problem (Zhang et al., 2013; Ma et al., 2013). Without a denoising
procedure, it is hard to apply the Taylor series methods for the field
data with relatively large noise.

In summary, the FFT provides an efficient computation with the nu-
merical complexity of order n logn, where n is the number of unknowns.
To apply the FFT, a continuation process including the regularization is
usually converted into the wavenumber domain. For this reason, regu-
larized downward continuation in space domain has seldom been in-
vestigated. Zhang and Wong (2015) propose a numerical scheme for
3D gravity field inversion, where a special algebraic structure called
Block-Toeplize Toeplize-Block (BTTB) matrix is utilized to make the
scheme efficient.

In this paper, we consider the conjugate gradient (CG) method uti-
lizing the BTTB structure for downward continuation problem. The
BTTB structure is derived from the downward continuation formulation
in space domain, and it has the same numerical efficiency as the FFT-
based methods. However, compared with the FFT-based methods, the
proposed method induces very small artifact near the boundary, such
that neither extrapolation nor tailoring process is required to reduce
the boundary error. The characteristic of the BTTB structure allows the
use of an iterative scheme without accumulating the error near the
boundary. Combining the BTTB structure with the re-weighted regular-
ized conjugate gradientmethod (BTTB–RRCG), a stable downward con-
tinuation method can be constructed. Here, all formulations are in time
domain, such that various space domain regularization stabilizers can
be applied. We compare the proposed computational scheme with
other recently proposed schemes for downward continuation. The
simulation results for synthetic and field data demonstrate that the
proposed scheme is more accurate and robust for applications using
clean and noisy data.

In Section 2, the formulation of downward continuation is present-
ed. We briefly introduce the Tikhonov regularized method (TR)
(Pašteka et al., 2012), adaptive iterative Tikhonov method (AIT) (Zeng
et al., 2013), and stable Taylor series methods (ITS) (Ma et al., 2013).
Section 3 focuses on the proposed BTTB–RRCG scheme. In Section 4,
syntheticfield data are used to validate the proposednumerical scheme,
and the result is compared with those obtained by the TR, AIT and ITS
methods. A Gaussian noise from 0.1% to 5% of themaximummagnitude
of the synthetic data is added to test the robustness. The error is
analyzed by using RMS and the relative error in terms of L-2 norm and
L-∞ norm. Particularly, the FFT-induced error near the boundary is in-
vestigated. In Section 5, we apply the proposed scheme to test cases
with field data, and similar to the synthetic cases, the result is compared
with other existing methods.

2. Mathematical background

The relationship between the potential field data at two observation
planes is given by Blakely (1996):

T x; y;h0ð Þ ¼ h0 � h
2π

∫∞�∞ ∫∞�∞
T x0; y0;hð Þ

x� x0ð Þ2 þ y� y0ð Þ2 þ h� h0ð Þ2
h i3=2 ; ð1Þ

where x and y are the horizontal coordinates, T(x,y,h0) is the observa-
tion field at higher elevation h0, and T(x,y,h) is the unknown field at

lower elevation h, such that h0Nh. The downward continuation process
is to seek T(x,y,h) at lower elevation from the potential field T(x,y,h0) at
higher elevation.

Denote the kernel as K, the integral Eq. (1) can be converted into the
following convolution form

T x; y;h0ð Þ ¼ ∫∞�∞ ∫∞�∞ K x� x0; y� y0; h0 � hð ÞT x0; y0;hð Þdx0dy0; ð2Þ

which can be further simplified as

T h0ð Þ ¼ K � T hð Þ; ð3Þ

where * denotes the convolution. According to the convolution theorem,

F T h0ð Þð Þ ¼ F K � T hð Þð Þ ¼ F Kð Þ � F T hð Þð Þ; ð4Þ

therefore,

T h0ð Þ ¼ F�1 F Kð Þ � F T hð Þð Þð Þ: ð5Þ

Since

F Kð Þ ¼ ∫∞�∞ ∫∞�∞ K x; yð Þe�2πi uxþvyð Þdxdy ¼ e� h0�hð Þ
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
; ð6Þ

denote T(h0) and T(h) by Th0
and Th, respectively, then Eq. (3) can be

rewritten into the following matrix form

Th0 ¼ F�1ΛFTh; ð7Þ

where F and F-1 are the Fourier matrices corresponding to a 2D Fourier
transform, and Λ is the continuation kernel K in a wavenumber domain

given by Eq. (6). Consider h0-hN0, the kernel e�ðh0�hÞ
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
is stable,

since the high frequency component can be compressed. This explains
why the upward continuation is a stable process.

According to Eq. (7), the most straightforward way to conduct a
downward continuation is

Th ¼ F�1Λ�1FTh0 ; ð8Þ

where Λ-1 is given by eðh0�hÞ
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
. Obviously, since h0-hN0, the kernel

given byeðh0�hÞ
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
will amplify all frequency components in Th0

, such
that the solution of Thwill be polluted by the high frequency component
or noise in Th0

. Denote Th by T, Eq. (8) can be rewritten in a simplified
form as

T̂ ¼ Λ‐1T ̂h0; ð9Þ

where T̂ and Tĥ0 are the potential field in wavenumber domain with
heights h and h0.

Therefore, a downward continuation is an inherently unstable
process, and conventionally, there aremainly two approaches to resolve
this issue: Tikhonov regularization in wavenumber domain and the
Taylor series methods.

2.1. Wavenumber domain Tikhonov regularization method

Let us denote the downward continuation formulation (Eq. (1)) into
the following form:

Th0 ¼ AT; ð10Þ

whereA is theupward continuation operator. Aswe have shownbefore,
solving Eq. (10) is an ill-posed problem,which is equivalent to compute
Eq. (8). Tikhonov and Arsenin (1977) propose an effective way to
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