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We present a newmethod to estimate subsurface geomodels using amulti-objective stochastic search technique
that allows a variety of direct and indirect measurements to simultaneously constrain the earth model. Inherent
uncertainties and noise in real data measurements may result in conflicting geological and geophysical datasets
for a given area; a realistic earthmodel can then only be produced by combining the datasets in a defined optimal
manner. One approach to solving this problem is by joint inversion of the various geological and/or geophysical
datasets, and estimating an optimal model by optimizing a weighted linear combination of several separate ob-
jective functions which compare simulated and observed datasets. In the present work, we consider the joint in-
version of multiple datasets for geomodel estimation, as amulti-objective optimization problem in which separate
objective functions for each subset of the observed data are defined, followed by an unweighted simultaneous
stochastic optimization to find the set of best compromise model solutions that fits the defined objectives,
along the so-called “Pareto front”. We demonstrate that geostatistically constrained initializations of the
algorithm improves convergence speed and produces superior geomodel solutions. We apply our method to a
3D reservoir lithofacies model estimation problem which is constrained by a set of geological and geophysical
data measurements and attributes, and assess the sensitivity of the resulting geomodels to changes in the
parameters of the stochastic optimization algorithm and the presence of realistic seismic noise conditions.
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1. Introduction

Subsurface geomodel estimation is a fundamental practice in many
Earth science disciplines: hydrology and ground water analyses,
geothermal studies, exploration and recovery of fossil fuel energy re-
sources, and CO2 geosequestration, among others. Yet the construction
of physically realistic subsurface models which “match” a finite set of
data measurements at the Earth's surface (or in boreholes) continues
to challenge researchers and practitioners (e.g., Tarantola, 1987;
Schwarzbach et al., 2005).

To model the subsurface conditions accurately in three dimensions,
a variety of geological data (e.g., core measurements, well logs and
geological maps) and geophysical data measurements (e.g., seismic,
resistivity and gravity) is required. Even the most sophisticated algo-
rithms may fail to produce convincing results, however, because each
information source has its limitations (Friedel, 2003; Kozlovskaya
et al., 2007). We believe that a realistic subsurface model can only be

obtained by reconciling several types of data measurement. For in-
stance, geological data may describe the general distribution of subsur-
face rock properties, but other factors — the limited lateral coverage of
wells and the associated heterogeneous nature of most of the proper-
ties, for example — may lead to highly uncertain models (Saussus and
Sams, 2012). In this context, geophysical data might add new informa-
tion due to its high resolution spatial coverage, not only for the definition
of the model framework and geometry, but also for both the discrete and
continuous property modeling processes (Doyen, 2007). Optimal results
are achieved if the final geomodels simultaneously agreewith themultiple
objectives that incorporate each of the complementary datasets. Subsurface
geomodel estimation then becomes a nonlinear optimization problem with
multiple objective statements and datasets.

Conventionally, there are two broad approaches to multi-objective
optimization (Kozlovskaya et al., 2007):

1. Independent inversion of each dataset to obtain different self-
directed (individual) models, which are then combined and
averaged to produce the final model result.

2. Simultaneous joint inversion of multiple datasets which directly
produce the final model result.

Journal of Applied Geophysics 129 (2016) 187–199

⁎ Corresponding author.
E-mail addresses: emami.m@ut.ac.ir (M. Emami Niri), david.lumley@uwa.edu.au

(D.E. Lumley).

http://dx.doi.org/10.1016/j.jappgeo.2016.03.031
0926-9851/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Applied Geophysics

j ourna l homepage: www.e lsev ie r .com/ locate / j appgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2016.03.031&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2016.03.031
mailto:david.lumley@uwa.edu.au
http://dx.doi.org/10.1016/j.jappgeo.2016.03.031
http://www.sciencedirect.com/science/journal/09269851
www.elsevier.com/locate/jappgeo


A common approach to joint inversion of multiple datasets is to
apply weighted summation of the objective functions defined for each
subset of the assimilated datasets to obtain a global objective function:

Global objective function ¼
X

i
wiObji; ð1Þ

where Obji is the ith objective function statement, and wi is the corre-
sponding ith weighting factor. The global objective function is then
optimized using one of several classical inversion techniques to find
the best-fitting model (Miettinen, 1999; Moghadas et al., 2010). This
approach poses several challenges: firstly, the difficulty in determining
the optimal set of weights for each of the objective functions; secondly,
the need for several optimization-runs to find a different solution
for each set of trial weights; and finally the difficulties in identifying
non-convex Pareto fronts (Hajizadeh, 2011). All of these issues may be
subject to user bias.

In this study, we demonstrate that a joint inversion problem of this
kind for subsurface geomodel estimation can be solved as a simulta-
neous multi-objective optimization problem. The proposed method con-
sists of two steps. First, all relevant problem domain knowledge and
prior information are assimilated in order to generate an ensemble of
possible initial geomodels. Second, amulti-objective optimization prob-
lem is designed to update the initial ensemble of geomodels such that
multiple objective functions are defined and tested against several sets
of observed data. An ensemble-based stochastic search technique is
then used to find the best compromise model solutions among all of
the components of the objective function vector (found along the
optimal Pareto front), in a single optimization run.

Multi-objective optimization problems are commonly found in com-
puter science (e.g., Ferrer et al., 2012; Balaprakash et al., 2014), physics
(e.g., Di Barba et al., 2014), economics (Bamufleh et al., 2013) and vari-
ous engineering disciplines (e.g., Yildiz and Solanki, 2012; Asadi et al.,
2012; Ahmadi et al., 2013; Dehghanian et al., 2013). Many Earth science
inverse problems are nonlinear optimization problems with multiple
constraining objective function statements and datasets that cannot
be solved efficiently using a single-objective optimization approach.
This is mainly due to the difficulty of choosing an optimal weighting
scheme for each term in theweighted summation of the objective func-
tions. Due to such limitations in traditional optimization approaches,
various multi-objective optimization methods have been developed to
solve complex geoscience inverse problems, especially if they do not re-
quire specification of objective function weights (e.g., Ray and Sarker,
2007; Carbone et al., 2008; Heyburn and Fox, 2010; Han et al., 2011).
In this study, we use an evolutionary algorithm to address the multi-
objective geomodel estimation problem. Historically, algorithms of
this type have been successfully implemented in a number of geological
and geophysical inversion problems (Wilson and Vasudevan, 1991;
Gallagher et al., 1991; Sen and Stoffa, 1992). Combining the multi-
objective conceptwith evolutionary algorithms leads to powerful global
optimization algorithms that have attracted considerable attention
from researchers in various fields due to their ability to find a set of op-
timal solutions (Singh et al., 2008). Some examples of the application of
multi-objective evolutionary algorithms in various geoscience disci-
plines have been reported; for example, Moorkamp et al. (2007) imple-
mented a particular kind of multi-objective evolutionary algorithm for
the joint inversion of teleseismic and magnetotelluric datasets. We
note that other bio-inspired heuristic optimization techniques have
been reported in the context of multi-objective optimization problems
(Lobato et al., 2014). Representative methods include particle swarm
optimization (e.g., del Valle et al., 2008; Srivastava and Agarwal,
2010), artificial immune systems (Coello and Cortés, 2005), ant colony
optimization (Guntsch, 2004), bee colony algorithms (Pham et al.,
2006) and firefly colony algorithms (Yang, 2010).

In this paper we demonstrate the applicability of our method using
the example of a 3D reservoir lithofaciesmodeling problem conditioned
to seismic attributes (P- and S-wave impedance volumes) and prior

geological knowledge. Since valuable information is contained in both
P- and S-wave velocity and/or impedance datasets, we develop and
test a multi-objective optimization method to find the best compromise
geomodel solutions that simultaneously honor these two sets of inverted
seismic attributes, in addition to the prior geological information.

This paper is structured as follows. First, we review the basic con-
cepts ofmulti-objective optimizationproblems in Section2.1 and evolu-
tionary algorithms in Section 2.2. Then we illustrate the properties of
multi-objective evolutionary algorithms and multi-criteria decision
making in Sections 2.3 and 2.4 respectively. We introduce our new
method for geomodel estimation and discuss its associated characteris-
tics in Section 3, followed by its application to a 3D test model in
Section 4. Finally, we present qualitative and quantitative analyses of
the results in Section 5, and in Section 6 we summarize the conclusions
of this study.

2. Theory

2.1. Multi-objective optimization

Given a set of real-valued objective functions fi(x) dependent on a
real-valued decision variable x, the general form of a multi-objective
optimization problem can be written as:

Optimize f i xð Þ; i ¼ 1;…; k;
subject to hp xð Þ ¼ 0; p ¼ 1;…; P;

gm xð Þ≥0; m ¼ 1; ::;M;
xj

Lbxjbxj
U ; j ¼ 1;…;n:

9>>=
>>; ð2Þ

These expressions state that amulti-objective optimization problem
can be defined as finding a set of solution parameters (or decision vari-
ables) x=[x1,x2,… ,xn]T which optimizes (minimizes or maximizes) a
set of objective functions f(x)=[ f1(x), f2(x), … , fk(x)]T subject to P
equality constraints hp(x)=0, and M inequality constraints gm(x)≥0,
where n is the number of solution parameters and k is the number of
the objective functions. The variable bounds constrain each solution pa-
rameter xj to take a value within a lower xj

L bound and an upper xj
U

bound. The restrictions imposed by the constraint functions and vari-
able bounds define the feasible region F within the search space S
such that (F⊆S), and any x∈F yields a feasible solution (Miettinen,
1999; Deb, 2001).

The concept of optimality in multi-objective optimization problems
differs from that used in single-objective optimization problems; for
the latter there is usually one global optimum solution; however, in
multiple objective optimization problems, many optimal solutions are
possible, depending on the relative importance (weight) of each objec-
tive. A unique optimum solution (x⁎) for a multi-objective optimization
problem (Fig. 1, black circle solution) is a notional concept that is
seldom obtainable in practical situations. As a result, it is necessary to
be clear about what ‘optimal solution’means in the case of multiple ob-
jectives: rather than searching for a single optimal solution, in practice it
may be more appropriate to search for the set of optimal solutions that
represents the best compromise or ‘trade-off’ between all of the feasible
solutions (Coello et al., 2007).

In the context of multi-objective optimization problems, three im-
portant concepts need to be defined (Deb, 2001;Mohamed et al., 2012):

1) Domination: A solution x1 is said to dominate another solution x2 if
both of the following conditions exist:
- x1 is no worse than x2 for all objectives:

f i x1ð Þ ≤ f i x2ð Þ;∀i ¼ 1;2;…; k: ð3Þ

- x1 is better than x2 for at least one objective:

f i x1ð Þ b f i x2ð Þ; ∃i ¼ 1;2;…; k: ð4Þ
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