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resolution and fewer artifacts than standard migration. However, the same source wavefield is repetitively com-
puted during the Born modeling and RTM procedures of different iterations. We developed a new LSRTM method
with modified excitation-amplitude imaging conditions, where the source wavefield for RTM is forward propa-
gated only once while the maximum amplitude and its excitation-time at each grid are stored. Then, the RTM
procedure of different iterations only involves: (1) backward propagation of the residual between Born modeled
and acquired data, and (2) implementation of the modified excitation-amplitude imaging condition by multiply-
ing the maximum amplitude by the back propagated data residuals only at the grids that satisfy the imaging time
at each time-step. For a complex model, 2 or 3 local peak-amplitudes and corresponding traveltimes should be
confirmed and stored for all the grids so that multiarrival information of the source wavefield can be utilized
for imaging. Numerical experiments on a three-layer and the Marmousi2 model demonstrate that the proposed
LSRTM method saves huge computation and memory cost.
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1. Introduction

Field data usually suffer from limited recording aperture, coarse
sampling, and acquisition gaps; thus, the images produced by conven-
tional migration methods are contaminated by acquisition footprints.
Least-squares migration (LSM) is a linear inversion method for seeking
the subsurface reflectivity model, which can mitigate footprints
(Nemeth et al., 1999) and provide images with higher resolution and
more balanced amplitudes (Huang et al., 2014) than standard migra-
tion. LSM has been applied to Kirchhoff migration (Nemeth et al.,
1999; Duquet et al., 2000; Liu et al., 2005) and the one-way wave equa-
tion (Kiihl and Sacchi, 2003; Kaplan et al., 2010; Ren et al., 2011; Wang
et al., 2013), whereas LSM was recently been combined with RTM to
form LSRTM (Plessix and Mulder, 2004; Dai et al., 2010; Dong et al.,
2012; Dai et al.,, 2012; Dai and Schuster, 2013; Dutta and Schuster,
2014; Zhang and Schuster, 2014; Tan and Huang, 2014a; Zhang et al.,
2015).

However, the high computational cost of LSRTM is a great challenge.
A multisource approach with random- or linear-phase encoding has

* Corresponding author at: Key Laboratory of Shale Gas and Geoengineering, Institute of
Geology and Geophysics, Chinese Academy of Sciences, China.
E-mail addresses: liuxuejian10@mails.ucas.ac.cn (X. Liu), ykliu@mail.iggcas.ac.cn
(Y. Liu), huangxg3@cnooc.com.cn (X. Huang), lipeng07@cnpc.com.cn (P. Li).

http://dx.doi.org/10.1016/j,jappgeo.2016.03.009
0926-9851/© 2016 Elsevier B.V. All rights reserved.

been used to improve the efficiency of wave equation migration
(Zhang et al., 2005, 2007; Liu et al., 2006; Tang et al., 2013; Dai and
Schuster, 2013) and LSRTM (Dai et al., 2012; Dai and Schuster, 2013).
The main limitation of random-phase encoding is that fixed source-
receiver geometry is required (Dai et al., 2012), whereas the plane-
wave encoding scheme (Zhang et al., 2005, 2007) is more practice for
the moving source-receiver geometry.

To improve the efficiency of LSRTM, we review the RTM implemen-
tation strategies, which mainly involve four steps: the forward propaga-
tion of a source wavefield, reconstruction of a source wavefield in
backward-time, backward propagation of acquired data, and the zero-
lag crosscorrelation imaging condition. A source wavefield is usually re-
constructed in backward time by two categories of methods, (1) optimal
checkpoint methods (Symes, 2007) and (2) boundary wavefield propa-
gation methods (Tan and Huang, 2014b). The second category of
methods is usually much more efficient but requires more memory
and has the same computation cost as the forward propagation of a
source wavefield. For conventional LSRTM, if an acoustic wave equation
is solved by using a regular finite-difference scheme and a source
wavefield is reconstructed by using boundary wavefield propagation
methods, multiple-layer boundary wavefields of all time-steps and
snapshots of the last two time-steps should be stored in memory. The
source wavefield for the RTM procedure is forward propagated once
and must be reconstructed repetitively in backward-time during all
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Fig. 1. Multiarrivals at a single subsurface point: The source wavefield forward propagates
along different wavepaths and arrives at a subsurface point, x, with different incident angles.

iterations. The same source wavefield for the RTM of different iterations
requires huge computation time and large memory.

We developed a new LSRTM method based on the modified
excitation-amplitude imaging condition. Chang and McMechan (1986)
developed RTM with the excitation-time imaging condition, where the
excitation-time (i.e., the imaging time) is the first-arrival time comput-
ed by ray-tracing. A subsurface image was produced by putting back-
ward propagated receiver wavefield values into discrete image points
where the imaging times are satisfied at each time-step. With the
excitation-time at a grid point defined as the arrival time of the maxi-
mum source-wavefield amplitude (i.e., the excitation-amplitude),
Nguyen and McMechan (2013) proposed the excitation-amplitude
imaging condition by dividing the backward propagated receiver
wavefield by the precomputed excitation-amplitude only at the grid
points that satisfy the imaging time, which can be conveniently general-
ized to elastic RTM (Chen and Huang, 2014; Nguyen and McMechan,
2015). Standard LSRTM computes the gradient of the misfit function
using the crosscorrelation imaging condition. We developed a modified
excitation-amplitude imaging condition by multiplying the maximum
source wavefield amplitude with the corresponding receiver wavefield,
which accounts for the strongest energy of the crosscorrelation imaging
condition (Nguyen and McMechan, 2013). Moreover, when geology is
extremely complex and multiarrivals with different incident angles
occur (Gray et al., 2002), 2 or 3 local peak-amplitudes and their
traveltimes for all the grid points can be stored in memory and used
for migration during all iterations. Our method avoids the repetitive re-
constructions of source wavefields for RTM while saving large amounts
of memory by only storing 2 or 3 local peak-amplitudes and their
traveltimes.

Our method retains the same Born modeling procedure as the stan-
dard LSRTM. Born modeling requires the full waveform of the source
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Fig. 2. All of the multiarrivals with different phases are observed at a grid point. Several
peak-amplitudes with larger energy can be chosen, e.g., peak-amplitudes A1-A3 and
their traveltimes are chosen, and peak-amplitude A4 is neglected. The strongest peak-
amplitude A1 is the so-called excitation-amplitude. Instead of the whole waveform, only
several stored peak-amplitudes are used for imaging.

wavefield, which varies with different subsurface points, to form the
source term of the scattered wavefield. For the accuracy of the wave-
form of the modeled data, the repetitive forward propagations of the
source wavefield for Born modeling of different iterations are difficult
to avoid. We have tested our method and conventional LSRTM on two
numerical data sets, and our new method relative to the standard
LSRTM method saves approximately 25% of the computation cost and
most of the memory storage for source wavefield.

2. Conventional least-squares reverse-time migration

For a 2D model, the scattered data d(x;,xXs,®) recorded at the
receiverx, = (x,,z;) from the source xs=(xs,zs) can be represented
under the Born approximation as follows:

d(Xy, X5, 0) = wz/Go(xr,x, 0)m(X)Go(X,Xs,0) () dx, (1)

where  is the angular frequency, f;(®) is the source signature, m(x)
represents the reflectivity (a perturbed quantity from the background
velocity) at the subsurface point x=(x,z), and Gy(x,xs,®) and
Go(xr,X, ) are the Green's functions connecting the source and receiver
to the subsurface point, respectively. Because d(x,,Xs,®) is one element
of the vector d, Eq. (1) can be compactly represented with vectors as
follows:

d=Lm, (2)

where L is a linear forward modeling operator and m is the reflectivity
model vector.

The RTM operator can be regarded as the adjoint of the forward Born
modeling and can be represented as (Claerbout, 1992):

Mg = LTdobs: (3)

where the superscript T represents the conjugate transpose of the ma-
trices, LT compactly represents the migration operator, d,ps represents
the observed data, and m,,;; represents the migration result. The migra-
tion image of one subsurface point, x, can be expressed as follows:

Mg () = / / / 0 [Go(%, X6, ) fs()] Go” (Xr. %, ) (. X5, ©)ded%, s,
(4)

where the superscript * represents the complex conjugate. Eq. (4) indi-
cates that the crosscorrelation imaging condition is utilized for RTM.

The migrated image is only a good approximation of the subsurface
reflectivity if the observed data have infinite aperture and dense sam-
pling. To invert the true reflectivity model, the misfit function

1 €
F(m)=5 | Lm—dops | + |1, (5)

must be minimized (Nemeth et al., 1999), where ¢ is the damping
parameter. The regularization term avoids the generation of large
abnormal values in the inverted image.

The gradient descent algorithm

g% = Vf(m) = L7 (Lm® —doss) + £“m®),
smb = pg(k)’

m&+D—m® —\® k) (7)
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